Функции скелетной мускулатуры. Функциональная организация скелетных мышц

Анатомия мышц человека, их строение и развитие, пожалуй, можно назвать той самой наиболее актуальной темой, которая вызывает максимальный общественный интерес к культуризму. Стоит ли говорить о том, что именно строение, работа и функции мышц это та тема, которой персональный тренер должен уделять особое внимание. Как и в изложении других тем, введение в курс мы начнем с детального изучения анатомии мышц, их строения, классификации, работы и функций.

Ведение здорового образа жизни, правильное питание и систематическая физическая активность способствуют развитию мускулатуры и снижению уровня жира в организме. Строение и работы мышц человека будут понятны лишь при последовательном изучении сначала скелета человека и только затем мышц. И теперь, когда из статьи мы знаем, что он, в том числе выполняет функцию каркаса для крепления мышц, настало самое время изучить, какие же основные группы мышц формируют тело человека, где они находятся, как они выглядят и какие функции выполняют.

Выше вы можете видеть, как выглядит строение мышц человека на фото (3D модель). Сначала рассмотрим мускулатуру тела мужчины с терминами, применяемыми к бодибилдингу, затем мускулатуру тела женщины. Забегая наперед, стоит заметить, что строение мышц у мужчин и женщин принципиальных отличий не имеет, мускулатура тела практически полностью сходна.

Анатомия мышц человека

Мышцами называются органы тела, которые формирует эластичная ткань, и активность которой регулируется нервными импульсами. Функции мышц – это в том числе, движение и перемещение в пространстве частей тела человека. Полноценное их функционирование непосредственно влияет на физиологическую активность множества процессов в организме. Работа мышц регулируется нервной системой. Она способствует их взаимодействию с головным и спинным мозгом, а также участвует в процессе преобразования химической энергии в механическую. Тело человека формирует порядка 640 мышц (различные методы подсчета дифференцированных групп мышц, определяют их число от 639 до 850). Ниже приведено строение мышц человека (схема) на примере мужского и женского тела.

Строение мышц мужчины, вид спереди: 1 – трапеции; 2 – передняя зубчатая мышца; 3 – наружные косые мышцы живота; 4 – прямая мышца живота; 5 – портняжная мышца; 6 – гребенчатая мышца; 7 – длинная приводящая мышца бедра; 8 – тонкая мышца; 9 – напрягатель широкой фасции; 10 – большая грудная мышца; 11 – малая грудная мышца; 12 – передняя головка плеча; 13 – средняя головка плеча; 14 – брахиалис; 15 – пронатор; 16 – длинная головка бицепса; 17 – короткая головка бицепса; 18 – длинная ладонная мышца; 19 – экстензорная мышца запястья; 20 – длинная приводящая мышца запястья; 21 – длинный сгибатель; 22 – лучевой сгибатель запястья; 23 – плечелучевая мышца; 24 – латеральная мышца бедра; 25 – медиальная мышца бедра; 26 – прямая мышца бедра; 27 – длинная малоберцовая мышца; 28 – длинный разгибатель пальцев; 29 – передняя большеберцовая мышца; 30 – камбаловидная мышца; 31 – икроножная мышца

Строение мышц мужчины, вид сзади: 1 – задняя головка плеча; 2 – малая круглая мышца; 3 – большая круглая мышца; 4 – подостная мышца; 5 – ромбовидная мышца; 6 – экстензорная мышца запястья; 7 – плечелучевая мышца; 8 – локтевой сгибатель запястья; 9 – трапециевидная мышца; 10 – прямая остистая мышца; 11 – широчайшая мышца; 12 – грудопоясничная фасция; 13 – бицепс бедра; 14 – большая приводящая мышца бедра; 15 – полусухожильная мышца; 16 – тонкая мышца; 17 – полуперепончатая мышца; 18 – икроножная мышца; 19 – камбаловидная мышца; 20 – длинная малоберцовая мышца; 21 – мышца отводящая большой палец стопы; 22 – длинная головка трицепса; 23 – латеральная головка трицепса; 24 – медиальная головка трицепса; 25 – наружные косые мышцы живота; 26 – средняя ягодичная мышца; 27 – большая ягодичная мышца

Строение мышц женщины, вид спереди: 1 – лопаточно подъязычная мышца; 2 – грудинно-подъязычная мышца; 3 – грудинно-ключично-сосцевидная мышца; 4 – трапециевидная мышца; 5 – малая грудная мышца (не видна); 6 – большая грудная мышца; 7 – зубчатая мышца; 8 – прямая мышца живота; 9 – наружная косая мышца живота; 10 – гребенчатая мышца; 11 – портняжная мышца; 12 – длинная приводящая мышца бедра; 13 – напрягатель широкой фасции; 14 – тонкая мышца бедра; 15 – прямая мышца бедра; 16 – промежуточная широкая мышца бедра (не видна); 17 – латеральная широкая мышца бедра; 18 – медиальная широкая мышца бедра; 19 – икроножная мышца; 20 – передняя большеберцовая мышца; 21 – длинный разгибатель пальцев стопы; 22 – длинная большеберцовая мышца; 23 – камбаловидная мышца; 24 – передний пучок дельт; 25 – средний пучок дельт; 26 – плечевая мышца брахиалис; 27 – длинный пучок бицепса; 28 – короткий пучок бицепса; 29 – плечелучевая мышца; 30 – лучевой разгибатель запястья; 31 – круглый пронатор; 32 – лучевой сгибатель запястья; 33 – длинная ладонная мышца; 34 – локтевой сгибатель запястья

Строение мышц женщины, вид сзади: 1 – задний пучок дельт; 2 – длинный пучок трицепса; 3 – латеральный пучок трицепса; 4 – медиальный пучок трицепса; 5 – локтевой разгибатель запястья; 6 – наружная косая мышца живота; 7 – разгибатель пальцев; 8 – широкая фасция; 9 – бицепс бедра; 10 – полусухожильная мышца; 11 – тонкая мышца бедра; 12 – полуперепончатая мышца; 13 – икроножная мышца; 14 – камбаловидная мышца; 15 – короткая малоберцовая мышца; 16 – длинный сгибатель большого пальца; 17 – малая круглая мышца; 18 – большая круглая мышца; 19 – подостная мышца; 20 – трапециевидная мышца; 21 – ромбовидная мышца; 22 – широчайшая мышца; 23 – разгибатели позвоночника; 24 – грудопоясничная фасция; 25 – малая ягодичная мышца; 26 – большая ягодичная мышца

Мышцы отличаются довольно разнообразной формой. Мышцы, имеющие общее сухожилие, но обладающие двумя или более головками, называются двухглавыми (бицепс), трехглавыми (трицепс) или четырехглавыми (квадрицепс). Функции мышц так же довольно разнообразны, это сгибатели, разгибатели, отводящие, приводящие, вращатели (кнутри и кнаружи), поднимающие, опускающие, выпрямляющие и другие.

Типы мышечной ткани

Характерные черты строения позволяют классифицировать мышцы человека по трем типам: скелетные, гладкие и сердечную.

Типы мышечной ткани человека: I- скелетные мышцы; II- гладкие мышцы; III- сердечная мышца

  • Скелетные мышцы. Сокращение данного типа мышц полностью контролируется человеком. Объединенные со скелетом человека, они образуют опорно-двигательный аппарат. Скелетными данный тип мышц называют именно по причине их крепления к костям скелета.
  • Гладкие мышцы. Данный тип ткани присутствует в составе клеток внутренних органов, кожи и кровеносных сосудов. Строение гладких мышц человека подразумевает их нахождение по большей части в стенках полых внутренних органов, таких как пищевод или мочевой пузырь. Также они играют важную роль в процессах, не контролируемых нашим сознанием, например в моторике кишечника.
  • Сердечная мышца (миокард). Работу данной мышцы контролирует вегетативная нервная система. Ее сокращения не контролируются сознанием человека.

Поскольку сокращение гладкой и сердечной мышечной ткани не контролируется сознанием человека, акцент в данной статье мы сосредоточим именно на скелетных мышцах и подробном их описании.

Строение мышц

Мышечное волокно является структурным элементом мышц. По отдельности, каждое из них представляет собой не только клеточную, но и физиологическую единицу, которая способна сокращаться. Мышечное волокно имеет вид многоядерной клетки, диаметр волокна находится в диапазоне от 10 до 100 мкм. Эта многоядерная клетка находится в оболочке, называемой сарколеммой, которая в свою очередь наполнена саркоплазмой, а уже в саркоплазме находятся миофибриллы.

Миофибрилла представляет собой нитевидное образование, которое состоит из саркомеров. В толщину миофибриллы, как правило, составляют менее 1 мкм. С учетом количества миофибрилл, обычно различают белые (они же – быстрые) и красные (они же – медленные) мышечные волокна. Белые волокна содержат больше миофибрилл, но меньше саркоплазмы. Именно по этой причине они сокращаются быстрее. Красные волокна содержат много миоглобина, потому и получили такое название.

Внутреннее строение мышцы человека: 1 – кость; 2 – сухожилие; 3 – мышечная фасция; 4 – скелетная мышца; 5 – фиброзная оболочка скелетной мышцы; 6 – соединительно-тканная оболочка; 7 – артерии, вены, нервы; 8 – пучок; 9 – соединительная ткань; 10 – мышечное волокно; 11 – миофибрилла

Работа мышц характерна тем, что способность быстрее и сильнее сокращаться, свойственна именно белым волокнам. Они могут развивать усилие и скорость сокращения в 3-5 раз выше, чем медленные волокна. Физическая активность анаэробного типа (работа с отягощениями) выполняется преимущественно быстрыми мышечными волокнами. Длительная аэробная физическая активность (бег, плавание, велосипед) выполняется преимущественно медленными мышечными волокнами.

Медленные волокна более устойчивы к утомлению, в то же время, быстрые волокна к продолжительной физической активности не приспособлены. Что касается соотношения быстрых и медленных мышечных волокон в мышцах человека, то их количество примерно одинаково. У большей части обоих полов, порядка 45-50% мышц конечностей составляют медленные мышечные волокна. Сколько ни будь значительных половых различий в соотношении различных типов мышечных волокон у мужчин и женщин нет. Их соотношение формируется в начале жизненного цикла человека, иными словами является генетически запрограммированным и до самой старости практически не меняется.

Саркомеры (составные компоненты миофибрилл) формируются толстыми миозиновыми нитями и тонкими актиновыми нитями. Остановимся на них более детально.

Актин – белок, являющийся структурным элементом цитоскелета клеток и обладающий способностью сокращаться. Состоит из 375 остатков аминокислот, и составляет порядка 15% мышечного белка.

Миозин – главный компонент миофибрилл – сократительных волокон мышц, где его содержание может составлять порядка 65%. Молекулы сформированы двумя полипептидными цепочками, каждая из которых содержит около 2000 аминокислот. Каждая из таких цепочек имеет на конце так называемую головку, которая включает две маленькие цепочки, состоящие из 150-190 аминокислот.

Актомиозин – комплекс белков, сформированный из актина и миозина.

ФАКТ. По большей части, мышцы состоят из воды, белков и прочих компонентов: гликогена, липидов, азотсодержащих веществ, солей и т. д. Содержание воды колеблется в диапазоне 72-80% от общей массы мышц. Скелетная мышца состоит из большого количества волокон, и что характерно, чем их больше, тем мышца сильнее.

Классификация мышц

Мышечная система человека характерна разнообразием формы мышц, которые в свою очередь делятся на простые и сложные. Простые: веретенообразные, прямые, длинные, короткие, широкие. К сложным можно отнести многоглавые мышцы. Как мы уже говорили, если у мышц общее сухожилие, а головок две или больше, то их называют двухглавыми (бицепс), трехглавыми (трицепс) или четырехглавыми (квадрицепс), так же к многоглавым относятся многосухожильные и двубрюшные мышцы. К сложным относятся и следующие типы мышц с определенной геометрической формой: квадратные, дельтовидные, камбаловидные, пирамидальные, круглые, зубчатые, треугольные, ромбовидные, камбаловидные.

Основные функции мышц это сгибание, разгибание, отведение, приведение, супинация, пронация, поднятие, опускание, выпрямление и не только. Под термином супинация подразумевается вращение кнаружи, а под термином пронация – вращение кнутри.

По направлению волокон мышцы делят на: прямые, поперечные, круговые, косые, одноперистые, двуперистые, многоперистые, полусухожильные и полуперепончатые.

По отношению к суставам , учитывая число суставов, через которые они перекидываются: односуставные, двусуставные и многосуставные.

Работа мышц

В процессе сокращения нити актина проникают глубоко в промежутки между нитями миозина, причём длина обеих структур не меняется, а лишь сокращается общая длина актомиозинового комплекса – такой способ сокращения мышц называется скользящим. Скольжение актиновых нитей вдоль миозиновых нуждается в энергии, а энергия, необходимая для сокращения мышц, освобождается в результате взаимодействия актомиозина с АТФ (аденозинтрифосфат). Кроме АТФ важную роль в сокращении мышц играет вода, а также ионы кальция и магния.

Как уже говорилось, работа мышц полностью контролируется нервной системой. Это говорит о том, что их работой (сокращением и расслаблением) можно управлять сознательно. Для нормального и полноценного функционирования организма и передвижения его в пространстве, мышцы работают группами. Большая часть мышечных групп тела человека работает в парах, и выполняют противоположные функции. Выглядит это таким образом, что когда мышца «агонист» сокращается, мышца «антагонист» растягивается. То же справедливо и наоборот.

  • Агонист – мышца, выполняющая определенное движение.
  • Антагонист – мышца, выполняющая противоположное движение.

Мышцы обладают такими свойствами: эластичность, растяжение, сокращение. Эластичность и растяжение дают мышцам возможность меняться в размере и возвращаться к исходному состоянию, третье качество дает возможность создать усилие на ее концах и приводить к укорачиванию.

Нервное стимулирование может вызвать следующие типы мышечного сокращения: концентрическое, эксцентрическое и изометрическое. Концентрическое сокращение возникает в процессе преодоления нагрузки при выполнении заданного движения (подъем вверх при подтягиваниях на перекладине). Эксцентрическое сокращение возникает в процессе замедления движений в суставах (опускание вниз при подтягиваниях на перекладине). Изометрическое сокращение возникает в момент, когда усилие создаваемое мышцами равно нагрузке оказываемой на них (удержание корпуса в висе на перекладине).

Функции мышц

Зная, как называется и где находится та или иная мышца или группа мышц мы можем перейти к изучению блока – функции мышц человека. Ниже в таблице мы рассмотрим самые основные мышцы, которые тренируются в зале. Как правило, тренингу подвергаются шесть основных мышечных групп: грудь, спина, ноги, плечи, руки и пресс.

ФАКТ. Самая большая и самая сильная мышечная группа в теле человека это ноги. Самая большая мышца – ягодичная. Самая сильная – икроножная, она может удерживать вес до 150 кг.

Заключение

В данной статье мы рассмотрели такую сложную и объемную тему, как строение и функции мышц человека. Говоря о мышцах, мы конечно же подразумеваем и мышечные волокна, а вовлечение в работу мышечных волокон предполагает взаимодействие с ними нервной системы, поскольку выполнению мышечной активности предшествует иннервация двигательных нейронов. Именно по этой причине, в нашей следующей статье мы перейдем к рассмотрению строения и функций нервной системы.

Мышечная ткань признана доминантной тканью человеческого организма, удельный вес которой в общем весе человека составляет до 45 % у мужчин и до 30 % у представительниц прекрасного пола. Мускулатура включает разнообразные мышцы. Виды мышц насчитывают более шестисот наименований.

Значение мышц в организме

Мышцы играют крайне важную роль в любом живом организме. С их помощью приводится в движение опорно-двигательный аппарат. Благодаря работе мышц человек, как другие живые организмы, может не только ходить, стоять, бегать, совершать любое движение, но и дышать, жевать и перерабатывать пищу, и даже самый главный орган - сердце - тоже состоит из мышечной ткани.

Как осуществляется работа мышц?

Функционирование мышц происходит благодаря следующим их свойствам:

  • Возбудимость - это процесс активации, проявляемый в виде ответной реакции на раздражитель (как правило, это внешний фактор). Свойство проявляется в виде изменения обмена веществ в мышце и её мембране.
  • Проводимость - свойство, означающее способность мышечной ткани передавать образовавшийся в результате воздействия раздражителя нервный импульс от мышечного органа к спинному и головному мозгу, а также в обратном направлении.
  • Сократимость - конечное действие мускулатуры в ответ на стимулирующий фактор, проявляется в виде укорачивания мышечного волокна, также меняется тонус мышц, то есть степень их напряжённости. При этом скорость сокращения и максимальная напряжённость мускулатуры могут быть различными как следствие разного влияния раздражителя.

Следует отметить, что работа мышц возможна благодаря чередованию вышеописанных свойств чаще всего в следующем порядке: возбудимость-проводимость-сократимость. В случае если речь идёт о произвольной работе мускулатуры и импульс идёт от центральной нервной системы, то алгоритм будет иметь вид проводимость-возбудимость-сократимость.

Строение мышц

Любая мышца человека состоит из совокупности продолговатых действующих в одном и том же направлении клеток, называемой мышечным пучком. Пучки, в свою очередь, содержат мышечные клетки длиной до 20 см, именуемые также волокнами. Форма клеток поперечно-полосатых мышц продолговатая, гладких - веретенообразная.

Мышечное волокно представляет собой продолговатой формы клетку, ограниченную внешней оболочкой. Под оболочкой параллельно друг другу располагаются способные сокращаться белковые волокна: актиновые (светлые и тонкие) и миозиновые (тёмные, толстые). В периферийной части клетки (у поперечно-полосатых мышц) располагается несколько ядер. У гладких мышц ядро всего одно, оно имеет местоположение в центре клетки.

Классификация мышц по различным критериям

Наличие различных характеристик, отличных у тех или иных мышц, позволяет их условно группировать по объединяющему признаку. На сегодняшний день анатомия не располагает единой классификацией, по которой можно было бы сгруппировать человеческие мышцы. Виды мышц однако можно классифицировать по разнообразным признакам, а именно:

  1. По форме и длине.
  2. По выполняемым функциям.
  3. По отношению к суставам.
  4. По локализации в теле.
  5. По принадлежности к определённым частям тела.
  6. По расположению мышечных пучков.

Наряду с видами мышц выделяют три основные группы мышц в зависимости от физиологических особенностей строения:

  1. Поперечно-полосатые скелетные мышцы.
  2. Гладкие мышцы, составляющие структуру внутренних органов и сосудов.
  3. Сердечные волокна.

Одна и та же мышца может принадлежать одновременно к нескольким группам и видам, перечисленных выше, поскольку может содержать сразу несколько перекрёстных признаков: форму, функции, отношение к части тела и т.д.

Форма и величина мышечных пучков

Несмотря на относительно одинаковое строение всех мышечных волокон, они могут быть разной величины и формы. Таким образом, классификация мышц по данному признаку выделяет:

  1. Короткие мышцы приводят в движение небольшие участки опорно-двигательной системы человека и, как правило, находятся в глубоких слоях мускулатуры. Пример - межпозвоночные спинные мышцы.
  2. Длинные, наоборот, локализованы на тех частях тела, которые совершают большие амплитуды движений, например конечности (руки, ноги).
  3. Широкие покрывают в основном туловище (на животе, спине, грудине). Могут иметь разную направленность мышечных волокон, обеспечивая тем самым разнообразные сократительные движения.

Встречаются в организме человека и различные формы мускулатуры: круглые (сфинктеры), прямые, квадратные, ромбовидные, веретенообразные, трапециевидные, дельтовидные, зубчатые, одно- и двухперистые и мышечные волокна других форм.

Разновидности мускулатуры по выполняемым функциям

Скелетные мышцы человека могут выполнять различные функции: сгибание, разгибание, приведение, отведение, вращение. Исходя из данного признака, мышцы можно условно сгруппировать следующим образом:

  1. Разгибатели.
  2. Сгибатели.
  3. Приводящие.
  4. Отводящие.
  5. Вращательные.

Первые две группы всегда находятся на одной части тела, но в противоположных сторонах таким образом, что когда сокращаются первые, вторые расслабляются, и наоборот. Сгибающие и разгибающие мышцы приводят в движение конечности и являются мышцами-антогонистами. Например, мышца плеча бицепс сгибает руку, а трицепс разгибает. Если в результате работы мускулатуры часть тела или орган совершает движение в сторону тела, эти мышцы приводящие, если в обратном направлении - отводящие. Вращатели обеспечивают круговые движения шеи, поясницы, головы, при этом вращатели делятся на два подвида: пронаторы, осуществляющие движение внутрь, и супинаторы, обеспечивающие движение в наружную сторону.

По отношению к суставам

Мускулатура крепится с помощью сухожилий к суставам, приводя их в движение. В зависимости от варианта крепления и количества суставов, на которые воздействуют мышцы, они бывают: односуставные и многосуставные. Таким образом, если мускулатура крепится только к одному суставу, то это односуставная мышца, если к двум - двусуставная, а если больше суставов - многосуставная (сгибатели/разгибатели пальцев).

Как правило, односуставные мышечные пучки длиннее многосуставных. Они обеспечивают более полную амплитуду движения сустава относительно своей оси, поскольку расходуют свою сократительную способность только на один сустав, в то время как свою сократимость распределяют на два сустава многосуставные мышцы. Виды мышц последние короче и могут обеспечить гораздо меньшую подвижность при одновременном движении суставов, к которым они прикреплены. Ещё одним свойством многосуставной мускулатуры называют пассивную недостаточность. Её можно наблюдать, когда под влиянием внешних факторов мышца полностью растягивается, после этого она не продолжает движение, а, напротив, затормаживает.

Локализация мускулатуры

Мышечные пучки могут располагаться в подкожном слое, образуя поверхностные группы мышц, а могут и в более глубоких слоях - к ним относятся глубинные мышечные волокна. Так например, мускулатура шеи состоит из поверхностных и глубинных волокон, одни из которых отвечают за движения шейного отдела, а другие оттягивают кожу шеи, прилегающего участка кожи груди, а также участвуют в поворотах и опрокидываниях головы. В зависимости от расположения по отношению к определённому органу могут быть внутренние и наружные мышцы (наружные и внутренние мышцы шеи, живота).

Виды мускулатуры по частям тела

По отношению к частям тела мускулатура делится на следующие виды:

  1. Мышцы головы подразделяются на две группы: жевательные, отвечающие за механическое измельчение пищи, и мимические мышцы - виды мышц, благодаря которым человек выражает свои эмоции, настроение.
  2. Мышцы туловища подразделяются по анатомическим отделам: шейные, грудные (большая грудинная, трапециевидная, грудинно-ключичная), спинные (ромбовидная, широчайшая спинная, большая круглая), брюшные (внутренние и наружные брюшные, в том числе пресс и диафрагма).
  3. Мышцы верхних и нижних конечностей: плечевые (дельтовидная, трёхглавая, двуглавая плечевая), локтевые сгибатели и разгибатели, икроножные (камбаловидная), берцовые, мышцы стопы.

Разновидности мускулатуры по расположению мышечных пучков

Анатомия мышц у различных видов может отличаться расположением мышечных пучков. В связи с этим выделяют такие мышечные волокна, как:

  1. Перистые напоминают строение птичьего пера, в них пучки мышц крепятся к сухожилиям только одной стороной, а другой расходятся. Перистая форма расположения мышечных пучков характерна для так называемых сильных мышц. Место их крепления к надкостнице является довольно обширным. Как правило, они короткие и могут развивать большую силу и выносливость, при этом тонус мышц не будет отличаться большой величиной.
  2. Мышцы с параллельным расположением пучков также называют ловкими. По сравнению с перистыми они имеют большую длину, при этом менее выносливы, однако могут выполнять более тонкую работу. При сокращении напряжение в них значительно увеличивается, что значительно снижает их выносливость.

Группы мускулатуры по структурным особенностям

Скопления мышечных волокон образуют целые ткани, структурные особенности которых обуславливает их условное разделения на три группы:


КЛАССИФИКАЦИЯ МЫШЕЧНЫХ ВОЛОКОН.

Морфологическая классификация

Поперечно-полосатая (поперечно-исчерченная)

Гладкая (неисчерченная)

Классификация по типу контроля мышечной актичности

Поперечно-полосатая мышечная ткань скелетного типа.

Гладкая мышечная ткань внутренних органов.

Поперечно-полосатая мышечная ткань сердечного типа

КЛАССИФИКАЦИЯ СКЕЛЕТНЫХ МЫШЕЧНЫХ ВОЛОКОН

ПОПЕРЕЧНО-ПОЛОСАТЫЕ МЫШЦЫ представляют собой максимально специализированый аппарат для осуществления быстрого сокращения. Поперечно-полосатые мышцы бывают двух типов - скелетные и сердечные. СКЕЛЕТНЫЕ мышцы состоят из мышечных волокон, каждое из которых представляет собой многоядерную клетку, полученную в результате слияния большого количества клеток. В зависимости от сократительных свойств, окраски и утомляемости мышечные волокна подразделяют на две группы - КРАСНЫЕ И БЕЛЫЕ. Функциональной единицей мышечного волокна является миофибрилла. Миофибриллы занимают практически всю цитоплазму мышечного волокна, оттесняя ядра на периферию.

КРАСНЫЕ МЫШЕЧНЫЕ волокна (волокна 1 типа) содержат большое количество митохондрий с высокой активностью окислительных ферментов. Сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма (используют кислород). Они участвуют в движениях, не требующих значительных усилий, - например, в поддержании позы.

БЕЛЫМ МЫШЕЧНЫМ ВОЛОКНАМ (волокнам 2 типа) присуща высокая активность ферментов гликолиза, значительная сила сокращения и такая высокая скорость потребления энергии, для которой уже не хватает аэробного метаболизма. Поэтому двигательные единицы, состоящие из белых волокон, обеспечивают быстрые, но кратковременные движения, требующие рывковых усилий.

КЛАССИФИКАЦИЯ ГЛАДКИХ МЫШЦ

Гладкие мышцы подразделяются на ВИСЦЕРАЛЬНЫЕ (УНИТАРНЫЕ) И МУЛЬТИУНИТАРНЫЕ . ВИСЦЕРАЛЬНЫЕ ГЛАДКИЕ мышцы находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже. К МУЛЫПИУНИТАРНЫМ относятся ресничная мышца и мышца радужки глаза. Деление гладких мышц на висцеральные и мультиунитарные основано на различной плотности их двигательной иннервации. В ВИСЦЕРАЛЬНЫХ ГЛАДКИХ мышцах двигательные нервные окончания имеются на небольшом количестве гладких мышечных клеток.

ФУНКЦИИ СКЕЛЕТНЫХ И ГЛАДКИХ МЫШЦ.

ФУНКЦИИ И СВОЙСТВА ГЛАДКИХ МЫШЦ

1. ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ . Гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения - тонуса. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении - расслабляется.



2. АВТОМАТИЯ . ПД гладких мышечных клеток имеют авторитмический характер, подобно потенциалам проводящей системы сердца. Это свидетельствует о том, что любые клетки гладких мышц способны к самопроизвольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

3. РЕАКЦИЯ НА РАСТЯЖЕНИЕ . В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге - тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления.

4. ПЛАСТИЧНОСТ Ь. Изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня.

5. ХИМИЧЕСКАЯ ЧУВСТВИТЕЛЬНОСТЬ . Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов.

ФУНКЦИИ И СВОЙСТВА СКЕЛЕТНЫХ МЫШЦ

Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции :

1)обеспечивают определенную позу тела человека;

2)перемещают тело в пространстве;

3) перемещают отдельные части тела относительно друг друга;

4) являются источником тепла, выполняя терморегуляционную функцию.

Скелетная мышца обладает следующими важнейшими СВОЙСТВАМИ :

1)ВОЗБУДИМОСТЬЮ - способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала.

2) ПРОВОДИМОСТЬЮ - способностью проводить потенциал действия вдоль и в глубь мышечного волокна по Т-системе;

3) СОКРАТИМОСТЬЮ - способностью укорачиваться или развивать напряжение при возбуждении;

4) ЭЛАСТИЧНОСТЬЮ - способностью развивать напряжение при растягивании.

Основным элементом скелетной мышцы является мышечная клетка. В связи с тем, что мышечная клетка по отношению к своему поперечному сечению (0,05-0,11мм) относительно длинна (волокна бицепса, например, имеют длину до 15 см), ее называют также мышечным волокном.

Скелетная мышца состоит из большого количества этих структурных элементов, составляющих 85-90% от ее общей массы. Так, например, в состав бицепса входит более одного миллиона волокон.

Между мышечными волокнами расположена тонкая сеть мелких кровеносных сосудов (капилляров) и нервов (приблизительно 10% от общей массы мышцы). От 10 до 50 мышечных волокон соединяются в пучок. Пучки мышечных волокон и образуют скелетную мышцу. Мышечные волокна, пучки мышечных волокон и мышцы окутаны соединительной тканью.

Мышечные волокна на своих концах переходят в сухожилия. Через сухожилия, прикрепленные к костям, мышечная сила воздействует на кости скелета. Сухожилия и другие эластичные элементы мышцы обладают, кроме того, и упругими свойствами. При высокой и резкой внутренней нагрузке (сила мышечной тяги) или при сильном и внезапном внешнем силовом воздействии эластичные элементы мышцы растягиваются и тем самым смягчают силовые воздействия, распределяя их в течение более продолжительного промежутка времени.

Поэтому после хорошей разминки в мускулатуре редко происходят разрывы мышечных волокон и отрывы от костей. Сухожилия обладают значительно большим пределом прочности на растяжение (около 7000 Н/кв см), чем мышечная ткань (около 60 Н/кв см), где Н – ньютон, поэтому они гораздо тоньше, чем брюшко мышцы. В мышечном волокне содержится основное вещество, называемое саркоплазмой. В саркоплазме находятся митохондрии (30-35% от массы волокна), в которых протекают процессы обмена веществ и накапливаются вещества, богатые энергией, например фосфаты, гликоген и жиры. В саркоплазму погружены тонкие мышечные нити (миофибриллы), лежащие параллельно длинной оси мышечного волокна.

Миофибриллы составляют в совокупности приблизительно 50% массы волокна, их длина равна длине мышечных волокон, и они являются, собственно говоря, сократительными элементами мышцы. Они состоят из небольших, последовательно включаемых элементарных блоков, именуемых саркомерами (рис. 33).

Рис. 33. Схема скелетной мышцы: мышца (до 5 см), пучок мышечных волокон (0,5 мм), мышечное волокно (0,05-0,1 мм), миофибрилла (0,001-0,003 мм). Цифры в скобках обозначают приблизительный размер поперечного сечения строительных элементов мышцы

Так как длина саркомера в состоянии покоя равна приблизительно лишь 0,0002 мм, то для того, чтобы, к примеру, образовать цепочки из звеньев миофибрилл бицепса длиной 10-15 см, необходимо "соединить" огромное количество саркомеров. Толщина мышечных волокон зависит главным образом от количества и поперечного сечения миофибрилл.

В миофибриллах скелетных мышц наблюдается правильное чередование более светлых и более темных участков. Поэтому часто скелетные мышцы называют поперечнополосатыми. Миофибрилла состоит из одинаковых повторяющихся элементов, так называемых саркомеров. Саркомер ограничен с двух сторон Z-дисками. К этим дискам с обеих сторон прикрепляются тонкие актиновые нити. Нити актина обладают низкой плотностью и поэтому под микроскопом кажутся более прозрачными или более светлыми. Эти прозрачные, светлые области, располагающиеся с обеих сторон от Z-диска, получили название изотропных зон (или I-зон).
В середине саркомера располагается система толстых нитей, построенных преимущественно из другого сократительного белка, миозина. Эта часть саркомера обладает большей плотностью и образует более темную анизотропную зону (или А-зону). В ходе сокращения миозин становится способным взаимодействовать с актином и начинает тянуть нити актина к центру саркомера. Вследствие такого движения уменьшается длина каждого саркомера и всей мышцы в целом. Важно отметить, что при такой системе генерации движения, получившей название системы скользящих нитей, не изменяется длина нитей (ни нитей актина, ни нитей миозина). Укорочение является следствием лишь перемещения нитей друг относительно друга. Сигналом для начала мышечного сокращения является повышение концентрации Са 2+ внутри клетки. Концентрация кальция в клетке регулируется с помощью специальных кальциевых насосов, встроенных в наружную мембрану и мембраны саркоплазматического ретикулума, который оплетает миофибриллы.

Двигательная единица (ДЕ) – группа мышечных волокон, иннервируемых одним мотонейроном. Мышца и ее нервный привод состоят из большого количества параллельно расположенных ДЕ (рис. 34).

Рис. 34. Строение двигательной единицы: 1 – спинной мозг; 2 – мотонейроны; 3 – аксоны; 4 – мышечные волокна

В нормальных условиях ДЕ работает как единое целое: посылаемые мотонейроном импульсы приводят в действие все входящие в ее состав мышечные волокна. Благодаря тому, что мышца состоит из множества ДЕ (в крупных мышцах до несколько сотен), она может работать не всей массой, а по частям. Это свойство используется при регуляции силы и скорости мышечного сокращения. В естественных условиях частота импульсов, посылаемых мотонейронами в ДЕ, находится в пределах 5–35 имп./с, лишь при максимальных мышечных усилиях удается зарегистрировать частоту разрядов выше 50 имп./с.

Компоненты ДЕ обладают различной лабильностью: аксон – до 1000 имп./с, мышечное волокно – 250-500, мионевральный синапс – 100–150, тело мотонейрона – до 50 имп./с. Утомляемость компонента тем выше, чем меньше его лабильность.

Различают быстрые и медленные ДЕ. Быстрые обладают большой силой и скоростью сок-ращения в короткое время, высокой активностью гликолитических процессов, медленные рабо-тают в условиях высокой активности окислительных процессов длительно, при меньшей силе и скорости сокращения. Первые быстро утомляемы, содержат много гликогена, вторые выносливы – в них много митохондрий. Медленные ДЕ активны при любом напряжении мышцы, тогда как быстрые ДЕ активны лишь при сильных мышечных напряжениях.

Основываясь на анализе ферментов мышечных волокон, их классифицируют на три вида: тип I, тип IIа, тип IIб.

В зависимости от скорости сокращения, аэробной и анаэробной возможности используют понятия: медленно-сокращающийся, окислительный тип (МО), быстро-сокращающийся, окислительно-гликолитический тип (БОГ) и быстро-сокращающийся, гликолитический тип (БГ).

Существуют и другие классификации ДЕ. Так, основываясь на двух параметрах – снижении прерывистого тетануса и сопротивлении утомлению – ДЕ делят на три группы (Burke, 1981): медленно сокращающиеся, невосприимчивые к утомлению (тип S); быстро сокращающиеся невосприимчивые к утомлению (тип FR) и быстро сокращающиеся восприимчивые к утомлению (тип FF).

Волокна I типа соответствуют волокнам типа МО, волокна IIа типа– волокнам типа БОГ, а волокна IIб типа– волокнам типа БГ. Мышечные волокна типа МО относятся к ДЕ типа S, волокна типа БОГ – к ДЕ типа FR, а волокна типа БГ – к ДЕ типа FF.

Каждая мышца человека содержит совокупность всех трех типов волокон. ДЕ типа FF характеризуется наибольшей силой сокращения, наименьшей продолжительностью сокращения и наибольшей восприимчивостью к утомлению.

Говоря о пропорциях различных мышечных волокон у человека, следует отметить, что и у мужчин, и у женщин несколько больше медленных волокон (по данным различных авторов –
от 52 до 55%).

Имеется строгая зависимость между количеством медленно- и быстро сокращающихся волокон в мышечной ткани и спортивными дости­жениями на спринтерских и стайерских дистанциях.

Икроножные мышцы чемпионов мира по марафону содержат 93–99% медленных волокон, тогда как у сильнейших спринтеров мира в этих мышцах больше количество быстрых волокон (92%).

У нетренированного человека число двигательных единиц, которые могут быть мобили-зованы при максимальных силовых напряжениях, обычно не превышает 25–30%, а у хорошо тренированных к силовым нагрузкам лиц число вовлеченных в работу моторных единиц может превышать 80–90%. В основе этого явления лежит адаптация центральной нервной системы, приводящая к повышению способности моторных центров мобилизовывать большее число мотонейронов и к совершенствованию межмышечной координации (рис. 35).

Рис. 35. Характеристика двигательных единиц

Мышцы человека по отношению к его общей массе составляют примерно 40%. Основной их функцией в организме является обеспечение движения за счет способности сокращаться и расслабляться. Впервые строение мышц (8 класс) начинает изучаться в школе. Там знания даются на общем уровне, без особого углубления. Статья будет интересна тем, кто желает немного выйти за эти рамки.

Строение мышц: общие сведения

Мышечная ткань представляет собой группу, объединяющую поперечно-полосатую, гладкую и сердечную разновидности. Различающиеся по происхождению и строению, они объединены по признаку выполняемой функции, то есть способности сокращаться и удлиняться. Кроме перечисленных разновидностей, которые формируются из мезенхимы (мезодермы), в человеческом организме есть еще и мышечная ткань, имеющая эктодермальное происхождение. Это миоциты радужки глаз.

Структурное, общее строение мышц таково: они состоят из активной части, называемой брюшком, и сухожильных концов (сухожилия). Последние образованы из плотной соединительной ткани и выполняют функцию прикрепления. Они отличаются характерным беловато-желтым цветом и блеском. К тому же, обладают значительной крепостью. Обычно своими сухожилиями мышцы прикрепляются к звеньям скелета, соединение с которыми подвижно. Однако некоторые могут крепиться и к фасциям, к различным органам (глазное яблоко, хрящ гортани и т.д.), к коже (на лице). Кровоснабжение мышц различается и зависит от испытываемых ими нагрузок.

Регулирование работы мышц

Контроль над их работой осуществляется, как и у других органов, нервной системой. Рецепторами или эффекторами оканчиваются ее волокна в мышцах. Первые располагаются также и в сухожилиях, имеют вид концевых разветвлений чувствительного нерва или нервно-мышечного веретена, обладающего сложным устройством. Они реагируют на степень сокращения и растяжения, вследствие чего у человека появляется определенное чувство, которое, в частности, помогает определить положение тела в пространстве. Эффекторные нервные окончания (второе название - моторные бляшки) принадлежат двигательному нерву.

Строение мышц характеризуется также наличием в них окончаний волокон симпатической нервной системы (вегетативной).

Строение поперечно-полосатой мышечной ткани

Ее часто называют скелетной или исчерченной. Строение скелетной мышцы достаточно непростое. Она образована волокнами, имеющими цилиндрическую форму, длиной от 1 мм до 4 см и более, толщиной 0,1 мм. Причем каждое представляет собой особый комплекс, состоящий из миосателлитоцитов и миосимпласта, покрытых плазматической мембраной, называемой сарколеммой. Снаружи к ней прилегает базальная мембрана (пластинка), образованная из тончайших коллагеновых и ретикулярных волокон. Миосимпласт состоит из большого количества ядер эллипсоидной формы, миофибрилл и цитоплазмы.

Строение мышц данного типа отличается хорошо развитой саркотубулярной сетью, образованной из двух компонентов: канальцев ЭПС и Т-трубочек. Последние играют важную роль в ускорении проведения потенциала действия к микрофибриллам. Миосателлитоциты находятся непосредственно над сарколеммой. Клетки имеют уплощенную форму и крупное ядро, богатое хроматином, а также центросому и небольшое число органелл, миофибриллы отсутствуют.

Саркоплазма скелетной мышцы богата особым белком - миоглобином, который, как и гемоглобин, имеет способность связываться с кислородом. В зависимости от его содержания, наличия/отсутствия миофибрилл и толщины волокон различают два вида поперечно-полосатых мышц. Специфическое строение скелета, мышцы - все это элементы приспособления человека к прямохождению, их главные функции - опора и движение.

Красные мышечные волокна

Они обладают темным цветом, богаты миоглобином, саркоплазмой и митохондриями. Однако содержат мало миофибрилл. Эти волокна сокращаются достаточно медленно и могут долго пребывать в таком состоянии (иначе говоря, в рабочем). Строение скелетной мышцы и выполняемые ею функции стоит рассматривать как части единого целого, взаимно обуславливающие друг друга.

Белые мышечные волокна

Они отличаются светлым цветом, содержат гораздо меньшее количество саркоплазмы, митохондрий и миоглобина, но зато характеризуются высоким содержанием миофибрилл. Это обуславливает то, что они сокращаются гораздо интенсивнее, чем красные, но и «устают» тоже быстро.

Строение мышц человека отличается тем, что в организме имеется и тот, и другой вид. Такая совокупность волокон обуславливает быстроту реакции мышц (сокращение) и их продолжительную работоспособность.

Гладкая мышечная ткань (неисчерченная): строение

Она построена из миоцитов, дислоцирующихся в стенках лимфатических, кровеносных сосудов и образующих сократительный аппарат во внутренних полых органах. Это удлиненные клетки, имеющие веретенообразную форму, без поперечной исчерченности. Их расположение - групповое. Каждый миоцит окружает базальная мембрана, коллагеновые и ретикулярные волокна, среди которых находятся эластические. Между собой клетки связывают многочисленные нексусы. Особенности строения мышц данной группы заключаются в том, что к каждому миоциту, окруженному соединительной тканью, подходит одно нервное волокно (например, сфинктер зрачка), а импульс транспортируется от одной клетки к другой с помощью нексусов. Скорость его движения - 8-10 см/с.

У гладких миоцитов скорость сокращения гораздо меньше, чем у миоцитов исчерченной мышечной ткани. Зато и энергия расходуется экономно. Такое строение позволяет им совершать длительные сокращения тонического характера (например, сфинктеры кровеносных сосудов, полых, трубчатых органов) и достаточно медленные движения, которые зачастую бывают ритмичны.

Сердечная мышечная ткань: особенности

По классификации она принадлежит к поперечно-полосатой, но строение и функции мышц сердца заметно отличаются от скелетных. Сердечная мышечная ткань состоит из кардиомиоцитов, которые образуют комплексы, соединяясь друг с другом. Сокращение сердечной мышцы не подвластно контролю со стороны сознания человека. Кардиомиоциты представляют собой клетки, имеющие неправильную цилиндрическую форму, с 1-2 ядрами, большим количеством крупных митохондрий. Между собой они соединены вставочными дисками. Это особая зона, которая включает цитолемму, области прикрепления миофибрилл к ней, десмосы, нексусы (через них происходит передача нервного возбуждения и ионный обмен между клетками).

Классификация мышц в зависимости от формы и величины

1. Длинные и короткие. Первые встречаются там, где наиболее большой размах при движении. Например, верхние и нижние конечности. А короткие мышцы, в частности, расположены между отдельными позвонками.

2. Широкие мышцы (на фото - желудок). Они в основном располагаются на туловище, в полостных стенках тела. Например, поверхностные мышцы спины, груди, живота. При многослойном расположении их волокна, как правило, идут в разных направлениях. Поэтому они обеспечивают не только большое многообразие движений, но и укрепляют стенки полостей тела. У широких мышц сухожилия имеют плоскую форму и занимают большую поверхность, их называют растяжениями или апоневрозами.

3. Круговые мышцы. Они находятся вокруг отверстий тела и своими сокращениями суживают их, в результате чего получили название «сфинктеры». Например, круговая мышца рта.

Сложные мышцы: особенности строения

Их названия соответствуют их структуре: двух-, трех- (на фото) и четырехглавые. Строение мышц данного вида отличается тем, что их начало бывает не единым, а разделенным на 2, 3 или 4 части (головки) соответственно. Начинаясь от разных точек кости, они затем сдвигаются и объединяются в общее брюшко. Оно тоже может быть поделено промежуточным сухожилием поперек. Такая мышца называется двубрюшной. Направление волокон может быть параллельным оси либо находиться к ней под острым углом. В первом случае, наиболее распространенном, мышца достаточно сильно укорачивается при сокращении, обеспечивая тем самым большой размах при движениях. А во втором - волокна короткие, расположены под углом, но их гораздо больше по количеству. Поэтому мышца укорачивается незначительно при сокращении. Ее главное преимущество заключается в том, что она развивает при этом большую силу. В случае если волокна подходят к сухожилию только с одной стороны, мышца имеет название одноперистой, если с двух - двуперистой.

Вспомогательные аппараты мышц

Строение мышц человека уникально и имеет свои особенности. Так, например, под влиянием их работы из окружающей соединительной ткани образуются вспомогательные аппараты. Всего их четыре.

1. Фасции, которые есть не что иное, как оболочки из плотной, волокнистой фиброзной ткани (соединительной). Они покрывают как одиночные мышцы, так и целые группы, а также некоторые другие органы. К примеру, почки, сосудисто-нервные пучки и т.д. Они влияют на направление тяги во время сокращения и не допускают смещения мышц в стороны. Плотность и прочность фасций зависит от их расположения (в различных частях тела они отличаются).

2. Синовиальные сумки (на фото). Об их роли и строении многие, пожалуй, помнят еще со школьных уроков (Биология, 8 класс: "Строение мышц"). Они представляют собой своеобразные мешки, стенки которых образованы соединительной тканью и достаточно тонкие. Внутри заполнены жидкостью типа синовии. Как правило, образуются они там, где сухожилия соприкасаются между собой либо испытывают большое трение о кость при сокращении мышцы, а также в местах трения об нее кожного покрова (например, локти). Благодаря синовиальной жидкости улучшается и облегчается скольжение. Развиваются они в основном после рождения, и с годами полость увеличивается.

3. Синовиальные влагалища. Их развитие происходит внутри костно-фиброзных или фиброзных каналов, которыми сухожилия длинных мышц окружены в местах скольжения по кости. В строении синовиального влагалища различают два лепестка: внутренний, покрывающий со всех сторон сухожилие, и наружный, выстилающий стенки фиброзного канала. Они препятствуют трению сухожилий о кость.

4. Сесамовидные кости. Как правило, они окостеневают внутри связок или сухожилий, укрепляя их. Это облегчает работу мышцы за счет увеличения плеча приложения силы.