Изучением работоспособности и утомления мышц занимался павлов. Утомление. Развитие утомления при циклической работе

кл слова: Мирзоев О М, восстановление, научные, утомление, книга10, методика, тренировка, нагрузки, спорт, фармакология, бег, роль центральной нервной системы (ЦНС) в наступлении утомления, центрально-нервной теории утомления, центрально-корковой теории, Утомление корковых нервных клеток, о правильной трактовке процесса утомления, В физиологии утомление представляется как, Под характером работы подразумевается, локализацией утомления, три основные группы систем, запредельном торможении, скрытое (преодолеваемое) утомление, компенсируемая форма утомления, некомпенсированное (полное) утомление, В работающих мышцах при утомлении, запасы АТФ и КФ, скорости расщепления АТФ, активность ферментов, катаболизм белковых соединений, Максимальная физическая нагрузка большой длительности, показатели активности симпато-адреналовой системы (САС), при кратковременной интенсивной нагрузке, адреналина, норадреналина, При длительной напряженной тренировочной нагрузке, при нагрузке скоростной направленности

1.1. Физиологические и биохимические основы утомления при выполнении различных физических нагрузок

Проблема утомления считается актуальной общебиологической проблемой, представляет большой теоретический интерес и имеет важное практическое значение для деятельности человека в труде и спорте (Сеченов И.М.; Павлов И.П.; Ухтомский А.А.; Фольборт Г.В., Хилл А.В., 1951; Розенблат В.В., 1975; Моногаров В.Д., 1986, и др.)

Первую попытку решения проблемы утомления предпринял Г. Галилей (1564-1642 гг.), который столкнулся с этим явлением, анализируя механику работы мышц при подъёме тела по лестнице и при ходьбе.

По его мнению, в разбираемом случае мышцы утомляются в связи с тем, что им приходиться перемещать не только их собственный вес, но и вес остального тела. В противоположность этому сердце имеет дело только с собственным весом, и оно неутомимо.

По мере развития физиологической науки отдельные исследователи, особенно в XVIII и в первой половине XIX века, пытались затрагивать проблему утомления, но такие работы были единичными.

Физиологические исследования процессов утомления развернулись в основном с середины XIX века, в ходе которых сразу же обрисовались две основные теории: гуморально-локалистическая (периферическая) и центрально-нервная (Розенблат В.В., 1975).

Исходной позицией гуморально-локалистической теории , сторонниками которой были преимущественно зарубежные ученые, является представление об утомлении как мышечной слабости и усталости, т. е.

О процессах, происходящих под влиянием работы прежде всего в самой мышце. К тому же в исследованиях А. А. Ухтомского не только была дана глубокая критика гуморально-локалистических теорий утомления, но и показана огромная роль центральной нервной системы (ЦНС) в наступлении утомления.

Появление центрально-нервной теории утомления связано с работами великих отечественных физиологов И. М.Сеченова и И.П. Павлова, их учеников и последователей. Суть её состоит в проявлении запредельного
торможения в нервных клетках на различных уровнях ЦНС при выполнении напряженной мышечной работы.

Разработка этой теории явилась важным шагом в раскрытии механизмов, предохраняющих нервную систему, а через неё весь организм от истощения, результатом которого может стать переутомление и перетренированность.
Однако центрально-нервная теория не позволяет объяснить многочисленные факты, характерные для развития утомления при напряженной мышечной деятельности.

В частности, в ряде исследований показано, что даже в состоянии глубокого утомления работа может быть продолжена, если изменить её интенсивность и особенно характер её обеспечения при сохранении состава работающих мышц (Зимкин Н.В., 1972; Волков Н.И., 1974; Данько Ю.И., 1974; Моногаров В.Д., 1986; Платонов В.Н., 1986; Hollmann W., Hettinger T., 1980).

Это, по мнению Ю. И.Данько (1972), свидетельствует о том, что в нервных центрах не наступало ни торможения, ни истощения, т.е. неотъемлемых механизмов утомления согласно центрально-нервной теории. Н.И. Волков (1974) отмечает, что центрально-нервная теория мышечного утомления является модернизированным вариантом прежних локалистических концепций с той лишь разницей, что в ней центр наиболее значительных изменений, приводящих к развитию утомления, был перенесён из периферических исполнительных органов в ЦНС.

Значительный вклад в изучение проблемы утомления внёс В. В. Розенблат (1975). Согласно разработанной им центрально-корковой теории начальным звеном утомления при мышечной работе человека являются изменения "кортикальных центров".

По его мнению, уровень работоспособности мышц, связанный с настройкой их возбудимости, тонуса и упруго-вязких свойств, с состоянием кровоснабжения и трофических процессов в них, определяется уровнем работоспособности нервных центров, управляющих мышцами.

Утомление корковых нервных клеток приводит, с одной стороны, к нарушению контролируемой ими сложнейшей координации процессов, а с другой - меняет характер установочных влияний коры мозга и связанных с ней нижележащих образований на исполнительные органы.

Вопрос о правильной трактовке процесса утомления долгое время оставался дискуссионным. Ныне оно рассматривается как состояние организма, возникающее вследствие выполнения физической работы и проявляющееся во временном снижении работоспособности, в ухудшении двигательных и вегетативных функций, их дискоординации и появлении чувства усталости (Лектман Л.Б., 1952; Кулак И.А., 1968; Розенблат В.В., 1975; ФарфельВ.С., 1979; Моногаров В.Д., 1986; Коц Я.М., 1986, и др.).

В физиологии утомление представляется как биологически целесообразная реакция, направленная против истощения функционального потенциала организма (Фарфель B.C., Коц Я.М., 1968; Фарфель B.C., 1978; Моногаров В.Д., 1986; Коц Я.М., 1986).

В настоящее время специалисты при изучении проблемы утомления учитывают такие понятия этого процесса, как локализация и механизм (Розенблат В.В., 1975; Коц Я.М., 1986). Такой подход берет своё начало с 60-х годов XX столетия, когда ученые сошлись во мнении о том, что локализация и механизмы утомления определены функциональным состоянием различных органов и систем организма, их координационными взаимоотношениями и обусловлены характером выполняемой работы и другими факторами.

Под характером работы подразумевается:

  • режим деятельности мышц- изометрический, изотонический, ауксотонический;
  • объём задействованной мышечной массы - локальная, региональная, глобальная мышечная работа;
  • интенсивность и продолжительность мышечной работы - аэробный, анаэробный и смешанный режимы;
  • уровень мотивации, факторы внешней среды и т.д.
Под локализацией утомления понимается выявление той ведущей системы, функциональные изменения в которой определяют наступление этого состояния.

При этом можно рассматривать три основные группы систем , обеспечивающих выполнение любого упражнения (Коц Я.М., 1986):

  • регулирующие системы - центрально-нервная, вегетативная, нервная и гормонально-гуморальная;
  • система вегетативного обеспечения мышечной деятельности - дыхания, крови и кровообращения;
  • исполнительная система - двигательный аппарат.
Под локализацией утомления понимаются те функциональные изменения в деятельности ведущих систем, которые обуславливают развитие утомления.

К их числу можно отнести:

  • вегетативные системы -дыхательную и сердечно-сосудистую, которые в конечном счете обуславливают снижение кислородно-транспортных возможностей организма;
  • железы внутренней секреции - их роль особенно важна при выполнении упражнений, которые приводят к нарушению регуляции энергетического обеспечения мышечной работы.
Кроме того, в ЦНС происходят изменения, выражающиеся в запредельном торможении в корковых нервных центрах и торможении на уровне двигательных центров спинного мозга, а также в работающих мышцах, которое проявляется в ухудшении сократительных свойств мышечных волокон и нервно-мышечной передачи.

Как показали исследования последних десятилетий, структуру той или иной мышцы составляют различные по функциональным особенностям и организации деятельности двигательные единицы (ДЕ), которые, как и мышечные волокна, имеют свои функциональные отличия. P. E. Burke (1975) предложил разделить ДЕ исходя из сочетания двух свойств - скорости сокращения и устойчивости к утомлению. Им было выдвинуто четыре типа ДЕ (табл. 1).

Есть мнение (Гидиков А.А., 1975; Козаров Д., Шапков Ю.Т., 1983), что у человека наиболее надёжно различаются лишь ДЕ, относящиеся к двум крайним типам - медленные, устойчивые к утомлению (S) и быстрые, быстро утомляемые (FF).

В развитии утомления различают скрытое (преодолеваемое) утомление , при котором сохраняется высокая работоспособность, поддерживаемая волевым усилием.

Экономичность двигательной деятельности в этом случае падает, работа выполняется с большими энергетическими затратами. Это компенсируемая форма утомления .

При дальнейшем выполнении работы развивается некомпенсированное (полное) утомление . Главным признаком этого состояния является снижение работоспособности. При некомпенсированном утомлении угнетаются функции надпочечников , снижается активность дыхательных ферментов, происходит вторичное усиление процессов анаэробного гликолиза (Розенблат В.В., 1975; Моногаров В.Д., 1986).

В спортивной практике приобретают особое значение диагностика и изучение показателей , которые сопровождают и сигнализируют об утомлении.

Отличают несколько наиболее общих направлений:

  • увеличение числа ошибок "как результат расстройства координации движений";
  • неспособность к созданию и усвоению новых полезных навыков, расстройство старых ранее приобретённых навыков;
  • увеличение энергетических, прежде всего углеводных, трат на единицу произведённой работы и т.д. (Лектман Л.Б., 1952;Фарфель B.C., Коц Я.М., 1968; Талышев Ф.М., 1972).
Существуют многочисленные попытки классифицировать утомление. Так, различают четыре основных вида утомления (табл. 2).

В. Н. Волков (1973) составил классификацию клинических проявлений утомления (табл. 3).

Физиологическая и биохимическая характеристики стадий утомления даны в ряде работ (Гиппенрейтер B.C., 1962; Горкин М.Я., 1972; Граевская Н.Д., Иоффе Л.А., 1973; Яковлев Н.Н., 1974; Розенблат В.В., 1975; Зимкин Н.В., 1975; Волков В.М., 1977; Сорокин А.П., 1977; Фарфель B.C., 1979; Дудин Н.П., 1982; Дубровский В.И., 1985; Моногаров В.Д., 1986; Платонов В.Н., 1986, 1988; Меньшиков В.В., Волков Н.И., 1986; Коц Я.М., 1986; Павлова Э.С., 1987; Зотов В.П., 1990; Дубровский В.И., 1991, и др.).

В частности, при выполнении физической нагрузки в первой стадии утомления по сравнению с выполнением таковой в "устойчивом" состоянии происходят более глубокие сдвиги в показателях сердечно-сосудистой и дыхательной систем.

Во второй стадии утомления наблюдается дальнейшее снижение биоэлектрической активности коры большого мозга и более напряженная деятельность сердечно-сосудистой и дыхательной систем.

Третья стадия утомления характеризуется снижением биоэлектрической активности коры большого мозга (до 22% по сравнению с предыдущими двумя стадиями утомления) и ухудшением функционирования сердечно-сосудистой и дыхательной систем.

В работающих мышцах при утомлении происходит исчерпание запасов энергетических субстратов (АТФ, КФ, гликоген), накапливаются продукты распада (молочная кислота, кетоновые тела) и отмечаются резкие сдвиги внутренней среды организма. При этом нарушается регуляция процессов, связанных с энергетическим обеспечением мышечного сокращения, появляются выраженные изменения в деятельности систем легочного дыхания и кровообращения (Меньшиков В.В., Волков Н.И., 1986).

Как известно запасы АТФ в мышцах незначительны, их едва хватает на 1 с напряженной мышечной работы. Запасов КФ, используемого для ресинтеза АТФ при работе максимальной интенсивности, хватает всего на 6-8 с (Мищенко B.C., 1990).

Снижение скорости ресинтеза АТФ может явиться причиной наступающего утомления.
В скелетной мышце человека после максимальной кратковременной работы до отказа концентрация КФ падает почти до нуля, а концентрация АТФ - примерно до 60-70% значения в состоянии покоя.

В состоянии утомления снижается концентрация АТФ в нервных клетках и

  • нарушается синтез ацетилхолина в синаптических образованиях, в результате чего нарушается деятельность ЦНС по формированию двигательных импульсов и передаче их к работающим мышцам;
  • замедляется скорость переработки сигналов, поступающих от проприо- и хеморецепторов;
  • в моторных центрах развивается охранительное торможение, связанное с образованием гамма-аминомасляной кислоты (Меньшиков В.В., Волков Н.И., 1986; Мищенко B.C., 1990).
При утомлении в процессе выполнения физических нагрузок угнетается деятельность желез внутренней секреции, что ведёт к уменьшению выработки гормонов и снижению активности ряда ферментов. Прежде всего, это сказывается на миофибриллярной АТФ-азе, контролирующей преобразование химической энергии в механическую работу.

При снижении скорости расщепления АТФ в миофибриллах автоматически уменьшается и мощность выполняемой работы. В состоянии утомления уменьшается активность ферментов аэробного окисления и нарушается сопряжение реакций окисления с ресинтезом АТФ. Для поддержания необходимого уровня АТФ происходит вторичное усиление гликолиза, сопровождающееся за-кислением внутренних сред и нарушением гомеостаза. Усиливающийся катаболизм белковых соединений сопровождается повышением содержания мочевины в крови.

приводит организм спортсмена к увеличению продуцирования в мышечных клетках молочной кислоты, диффундирующей затем в крови и вызывающей изменения кислотно-щелочного равновесия. Снижение рН внутренней среды влияет на активность ряда ферментов, которая бывает наивысшей в слабощелочной среде (рН = 7,35 - 7,40).

Снижение рН в процессе физической нагрузки максимальной и субмаксимальной интенсивности приводит к уменьшению активности многих ферментов, в частности фосфофруктокиназы, АТФ-азы. У спортсменов величина рН может составлять 6,9 и ниже (после нагрузки высокой интенсивности в течение 40-60 с) (Osnes J.-B., Hermansen L, 1997).

Если в прошлые десятилетия в научно-методической литературе рассматривались преимущественно локалистические, центрально-нервные или другие гипотезы возникновения утомления, то в последние годы у специалистов сложилось мнение о многообразии факторов и причин, ставших первопричиной наступления снижения работоспособности.

Тренировочная и соревновательная деятельность спортсмена включает в себя выполнение упражнений различной мощности и продолжительности, циклических и ациклических, и т.д. При этом, естественно, возможно проявление различных механизмов и локализации утомления, показанные в табл. 4 (Коц Я.М., 1986; Меньшиков В.В., Волков Н.И., 1986; Мищенко B.C., 1990).

Научные исследования показали, что важное значение в определении функционального состояния спортсменов играют показатели активности симпато-адреналовой системы (САС) . Являясь интегральным нейро-гормональным индикатором, характеризующим стрессовую и эмоциональную реакцию спортсменов в ответ на тренировочные и соревновательные нагрузки, эта система играет важнейшую гомеостатическую и адаптационно-трофическую роль в организме.

Её можно использовать для оценки текущего состояния, эмоционального напряжения, в предстартовом периоде и на соревнованиях, развития утомления и адаптационных процессов в организме (Кассиль К.Н., 1976; Кассиль Г.Н., 1978; МищуковМ.С., ГалимовСД., 1980).

В исследовании В. В. Мехрикадзе (1985) было показано, что при кратковременной интенсивной нагрузке (тренировке, направленной на увеличение скорости бега) по сравнению с предтренировочным фоном наблюдалась достоверная активация гормонального и медиаторного звеньев САС. Было отмечено повышенное выделение адреналина (в 3 раза), норадреналина (в 1,5 раза), однако резервные возможности системы, оцениваемые по экскреции ДОФА, существенно не изменялись.

При длительной напряженной тренировочной нагрузке (30-60 с), направленной на совершенствование скоростной выносливости, наблюдалось достоверное увеличение активности звеньев САС. Так, экскреция адреналина и норадреналина по сравнению с фоном возрастала почти в 3 раза и дофамина более чем в 2 раза. Такая реакция САС на длительную нагрузку является положительной.

Таким образом, у спринтеров при нагрузке скоростной направленности САС преимущественно реагирует адреналовой реакцией. Это хорошо согласуется с известными представлениями о том, что адреналин -"гормон тревоги" ответствен за быструю мобилизацию энергетических ресурсов, быстрый переход организма из состояния покоя в состояние повышенной активности (Кассиль Г.Н., 1978).

Несмотря на большое внимание к проблеме утомления, имеющей важное прикладное значение, в том числе и для достижения высоких спортивных результатов, эта проблема, по мнению многих специалистов, далека от своего окончательного решения.

В заключение следует подчеркнуть, что напряженная и длительная физическая нагрузка обязательно сопровождается той или иной степенью утомления, которое, в свою очередь, вызывает процессы восстановления, стимулирует адаптационные перестройки в организме. Соотношение утомления и восстановления и есть, по существу, физиологическая основа процесса спортивной тренировки.

Зарубежные ученые, видя, что одними гуморальными теориями утомления не объяснить, стали заниматься изучением утомляемости нервных проводников. Они утверждали, что под влиянием длительного прохождения импульсов возбуждения (например при раздражении электрическим током) нервные проводники утомляются.

Русский же физиолог Н. Е. Введенский, подвергнув критике ряд ошибок в опытах западных ученых, доказал на фактах, что нервные проводники практически неутомляемы и что в нервах физиологическое проведение возбуждения происходит с минимальной тратой энергии. Следовательно, причина утомления крылась не в мышце и не в нервном проводнике. Естественно, что мысль ученых обратилась к изучению работоспособности нервных клеток.

Одним из первых, кто на ярком и интересном опыте сумел показать, куда тянутся нити утомления, был И. М. Сеченов. Усиленное изучение вопросов физиологии труда в нашем отечестве началось именно его блистательными работами. Прекрасные исследования И. М. Сеченова «Участие нервной системы в рабочих движениях человека» и «Очерк рабочих движений человека» и по сей день служат настольными руководствами для исследователей, изучающих физиологию труда. Занимаясь вопросами утомления, И. М. Сеченов искал не только причины утомления, но и стремился найти рациональные меры борьбы с этим состоянием.

Вообразим Ивана Михайловича Сеченова, сидящего за простым прибором, несколько напоминающим описанный выше эргограф. Только на сеченовском эргографе работал уже не один палец, а вся рука, движения которой были подобны тем, какие совершаются при пилке дров. Груз в определенном ритме поднимается и опускается с каждым взмахом руки. Проходит 4 часа, рука уже сделала 4800 движений, высота поднятия груза все более и более уменьшается, надвигается утомление. С этим неотвратимым явлением решает вступить в борьбу пытливый ум ученого, он ищет то «целебное лекарство», которое бы могло устранить утомление.

Ученый находит, что кратковременная работа левой руки снимает утомление правой руки гораздо быстрее, чем длительный отдых.

И. М. Сеченов объяснил это следующим образом: кратковременная работа левой (не работающей) рукой рождает в чувствующих нервах мышц импульсы возбуждения, несущиеся в центральную нервную систему, где они как бы перестраивают работу нервной системы, возбуждая и освежая ее, настраивая на новый плодотворный рабочий ритм. Если это так, рассуждал И. М. Сеченов, значит и легкое электрическое раздражение левой руки также должно снимать утомление. На самом деле так и оказалось: как внешние благотворные раздражения, сообщающие нам хорошее и приятное настроение (песня и музыка, соревнование и интерес к работе), вызывая возбуждение анализаторов, * повышают работоспособность нервной системы и нашего мозга, так и незначительная работа незанятой трудом левой рукой или слабые электрические раздражения ее уменьшают утомление. Таким образом И. М. Сеченов показал, что сущность утомления коренится в процессах, происходящих в центральной нервной системе.

Изучением явления, открытого И. М. Сеченовым, занимались и занимаются многие советские физиологи (Н. К. Верещагин, С. И. Крапивенцева, М. Е. Маршак, Г. В. Попов, А. Д. Слоним и др.). В последнее время, например, советский ученый Ш. А. Чахнашвили показал, что восстановление работоспособности утомленной руки происходит не только при активном отдыхе, связанном с деятельностью другой руки, но и при кратковременной работе, производимой во время отдыха нижними конечностями, мышцами туловища и шеи, жевательными мышцами. Оказалось, что сокращение мышц шеи (при движении головы) в течение 10-секундного отдыха увеличивает восстановление работоспособности утомленной руки на 61-75% по сравнению с «пассивным» отдыхом той же продолжительности.

* Анализатор представляет собой комплексное образование, включающее в себя рецептор, чувствительный нерв и нервный центр в коре больших полушарий. Рецепторы (от латинского слова recipio - воспринимаю) это чувствительные нервные окончания в мышце или другом органе (глаз, ухо). Восприятие внешних и внутренних раздражений осуществляется не рецепторами, как таковыми, а всей системой анализатора в целом. Учение об анализаторах впервые введено в физиологическую науку .

Способность человека совершать длительное время физическую (мышечную) работу называют физической работоспособностью. Величи­на физической работоспособности человека зависит от возраста, пола, трени­рованности, факторов окружающей среды (температуры, времени суток, со­держания в воздухе кислорода и т.д.) и функционального состояния организ­ма. Для сравнительной характеристики физической работоспособности раз­личных людей рассчитывают общее количество произведенной работы за 1 минуту, делят его на массу тела (кг) и получают относительную физиче­скую работоспособность (кг*м/мин на 1кг массы тела). В среднем уровень физической работоспособности юноши 20 лет составляет 15,5 кг*м/мин на 1кг массы тела, а у юноши-спортсмена того же возраста он достигает 25. В последние годы определение уровня физической работоспособности широко используют для оценки общего физического развития и состояния здоровья детей и подростков.

Длительные и интенсивные физические нагрузки приводят к вре­менному снижению физической работоспособности организма. Это фи­зиологическое состояние называют утомлением. В настоящее время пока­зано, что процесс утомления затрагивает, прежде всего, ЦНС, затем нерв­но-мышечный синапс и, в последнюю очередь - мышцу. Впервые значение нервной системы в развитии процессов утомления в организме было отмече­но И.М.Сеченовым. Доказательством справедливости этого заключения мож­но рассматривать обстоятельство, что интересная работа долго не вызывает утомления, а неинтересная - весьма быстро, хотя мышечные нагрузки в пер­вом случае могут даже превосходить работу, совершаемую тем же самым че­ловеком во втором случае.

Утомление представляет собой нормальный физиологический про­цесс, выработанный эволюционно для защиты систем организма от сис­тематического переутомления, которое является патологическим процессом и характеризуется расстройством деятельности нервной системы и других физиологических систем организма.

7.2.5. Возрастные особенности мышечной системы



Мышечная система в процессе онтогенеза претерпевает значительные структурные и функциональные изменения. Формирование мышечных клеток и образование мышц как структурных единиц мышечной системы происходит гетерохронно, т.е. сначала образуются те скелетные мышцы, которые необходимы для нормальной жизнедеятельности организма ребенка в данном возрастном этапе. Процесс "чернового" формирования мышц заканчивается к 7-8 неделе пренатального развития. После рождения процесс формирования мышечной системы продолжается. В частности, интенсивный рост мышечных волокон наблюдается до 7 лет и в пубертатный период. К 14 -16 годам микроструктура скелетной мышечной ткани практически полностью созревает, но утолщение мышечных волоков (со­вершенствование их сократительного аппарата) может продолжаться до 30 -35 лет.

Развитие мышц верхних конечностей опережает развитие мышц нижних конечностей. У годовалого ребенка мышцы плечевого пояса и рук развиты значительно лучше, чем мышцы таза и ног. Более крупные мышцы формируются всегда раньше мелких. Например, мышцы предплечья фор­мируются раньше мелких мышц кисти. Особенно интенсивно мышцы рук развиваются в 6 - 7 лет. Очень быстро общая масса мышц нарастает в пе­риод полового созревания: у мальчиков - в 13-14 лет, а у девочек - в 11- 12 лет. Ниже приведены данные, характеризующие массу скелетных мышц в процессе постнатального онтогенеза.

Значительно меняются в процессе онтогенеза и функциональные свойства мышц. Увеличивается возбудимость и лабильность мышечной ткани. Изменяется мышечный тонус. У новорожденного отмечается повы­шенный мышечный тонус, а мышцы-сгибатели конечностей преобладают над мышцами-разгибателями. В результате руки и ноги грудных детей находятся чаще в согнутом состоянии. У них плохо выражена способность мышц к расслаблению (с этим связана некоторая скованность движений детей), кото­рая с возрастом улучшается. Только после 13 - 15 лет движения становятся более пластичными. Именно в этом возрасте заканчивается формирование всех отделов двигательного анализатора.

В процессе развития опорно-двигательного аппарата изменяются двигательные качества мышц: быстрота, сила, ловкость и выносли­вость. Их развитие происходит неравномерно. Прежде всего, развиваются быстрота и ловкость.

Быстрота (скорость) движений характеризуется числом движений, которое ребенок в состоянии произвести за единицу времени. Она определя­ется тремя показателями:

1) скоростью одиночного движения,

2) временем двигательной реакции и

3) частотой движений.

Скорость одиночного движения значительно возрастает у детей с 4 -5 лет и к 13-15 годам достигает уровня взрослого. К этому же возрасту уровня взрослого достигает и время простой двигательной реакции, которое обу­словлено скоростью физиологических процессов в нервно-мышечном ап­парате. Максимальная произвольная частота движений увеличивается с 7 до 13 лет, причем у мальчиков в 7 -10 лет она выше, чем у девочек, а с 13 - 14 лет частота движений девочек превышает этот показатель у мальчиков. Наконец, максимальная частота движений в заданном ритме также резко уве­личивается в 7 - 9 лет. В целом, скорость движений максимально развивается к 16-17 годам.

До 13- 14 лет завершается в основном развитие ловкости, которая свя­зана со способностью детей и подростков осуществлять точные, координиро­ванные движения. Следовательно, ловкость связана:

1) с пространственной точностью движений,

2) с временной точностью движений,

3) с быстротой решения сложных двигательных задач.

Наиболее важен для развития ловкости дошкольный и младший школь­ный период. Наибольший прирост точности движений наблюдается с 4 - 5 до 7 - 8 лет. Интересно, что спортивная тренировка оказывает благотворное влияние на развитие ловкости и у 15 - 16 летних спортсменов точность дви­жений в два раза выше, чем у нетренированных подростков того же возраста. Таким образом, до 6 - 7 лет дети не в состоянии совершать тонкие точные движения в предельно короткое время. Затем постепенно развивается про­странственная точность движений, а за ней и временная. Наконец, в послед­нюю очередь совершенствуется способность быстро решать двигатель­ные задачи в различных ситуациях. Ловкость продолжает улучшаться до 17-18 лет.

Наибольший прирост силы наблюдается в среднем и старшем школь­ном возрасте, особенно интенсивно сила увеличивается с 10 - 12 лет до 16 -17 лет. У девочек прирост силы активируется несколько раньше, с 10 - 12 лет, а у мальчиков - с 13 - 14 лет. Тем не менее, мальчики по этому показателю во всех возрастных группах превосходят девочек.

Позже других двигательных качеств развивается выносливость, характеризующаяся тем временем, в течение которого сохраняется достаточ­ный уровень работоспособности организма. Существуют возрастные, поло­вые и индивидуальные отличия в выносливости. Выносливость детей до­школьного возраста находится на низком уровне, особенно к статической работе. Интенсивный прирост выносливости к динамической работе наблюдается с 11 - 12 лет Так, если принять объем динамической работы детей 7 лет за 100%, то у10-летних он составит 150%, а у 14-15-летних - более 400%. Так же интенсивно с 11-12 лет у детей нарастает выносливость к статическим нагрузкам. В целом, к 17-19 годам выносливость составляет около 85% от уровня взрослого. Своего максимального уровня она достигает к 25 - 30 го­дам.

Развитие движений и механизмов их координации наиболее интен­сивно идет в первые годы жизни и в подростковый период. У новорожденно­го координация движений очень несовершенна, а сами, движения имеют толь­ко бузусловно-рефлекторную основу. Особый интерес вызывает плаватель­ный рефлекс, максимальное проявление которого наблюдается примерно к 40 дню после рождения. В этом возрасте ребенок способен совершать в воде плавательные движения и держаться на ней до 1 5 минут. Естественно, что го­лова ребенка должна поддерживаться, так как его собственные мышцы шеи еще очень слабы. В дальнейшем рефлекс плавания и другие безусловные рефлексы постепенно угасают, а им на смену формируются двигательные на­выки. Все основные естественные движения, свойственные человеку (ходь­ба, лазанье, бег, прыжки и т.д.) и их координация формируются у ребенка в основном до 3 - 5 лет. При этом большое значение для нормального развития движений имеют первые недели жизни. Естественно, что и в дошкольном возрасте координационные механизмы еще очень несовершенны. Несмотря на это, дети способны овладевать относительно сложными движениями. В ча­стности, именно в этом возрасте они учатся орудийным движениям, т.е. дви­гательным умениям и навыкам пользоваться инструментом (молотком, ключом, ножницами). С 6 - 7 лет дети овладевают письмом и другими дви­жениями, требующими тонкой координации. К началу подросткового перио­да формирование координационных механизмов в целом завершается, и все виды движений становятся доступными для подростков. Конечно, совер­шенствование движений и их координации при систематических упражнени­ях возможно и в зрелом возрасте (например, у спортсменов, музыкантов и др.).

Совершенствование движений всегда тесно связано с развитием нервной системы ребенка. В подростковом периоде очень часто координа­ция движений вследствие гормональных перестроек несколько нарушается. Обычно к 15 - ] 6 годам это временное ухудшение бесследно исчезает. Общее формирование координационных механизмов заканчивается в конце подро­сткового возраста, а к 18 - 25 годам они полностью достигают уровня взрос­лого человека. Возраст в 18-30 лет считают «золотым» в развитии моторики человека. Это возраст расцвета его двигательных способностей.

Под утомлением следует понимать временное понижение работоспособности клетки, органа или организма, которое возникает в результате работы и исчезает после отдыха.

Утомление мышцы . Если на изолированную мышцу наносить одиночные ритмические раздражения индукционным током с частотой 1-2 раза в секунду и на барабане кимографа записывать ее сокращения (миограмма ), то можно отметить следующие явления. В первый период опыта наблюдается нарастание величины мышечных сокращений. Повышение работоспособности мышцы является результатом увеличения обменных процессов, возбудимости и лабильности. Затем в течение продолжительного времени наблюдается постоянная амплитуда сокращений мышцы. В дальнейшем отмечается постепенное снижение сократительного эффекта мышцы вплоть до отсутствия ее ответной реакции, что свидетельствует о развитии утомления (рис. 68).

Анализ миограмм показывает, что по мере развития утомления увеличивается продолжительность одиночного мышечного сокращения, главным образом за счет замедленного расслабления мышцы. В дальнейшем увеличивается латентный период сокращения и порог раздражения. При развитии утомления значительно нарастает хронаксия мышцы. Причинами возникающего в мышце утомления являются накопление продуктов обмена веществ (молочная, фосфорная кислоты и др.), уменьшение запаса кислорода и истощение энергетических ресурсов.

Утомление нервно-мышечного препарата . На нерв наносят достаточно сильные (или частые) раздражения и на барабане кимографа регистрируют кривую мышечных сокращений. При длительном раздражении нерва наблюдается постепенное снижение амплитуды сокращений и даже отсутствие ответной реакции мышцы (см. рис. 68). Ослабление силы наносимого раздражения или уменьшение его частоты также не сопровождается ответной реакцией мышцы, что свидетельствует о развитии утомления в нервно-мышечном препарате (см. рис. 68, Б).

Для того чтобы ответить на вопрос, в какой структуре нервно-мышечного препарата в первую очередь развивается утомление, перейдем к прямому раздражению мышцы стимулами исходной силы или частоты. В этом случае наблюдается восстановление механической реакции мышцы. Логично предположить, что утомление развилось либо в нерве, либо в мионевральном синапсе. Работами Н. Е. Введенского установлено, что нерв практически неутомляем. Следовательно, утомление в первую очередь развивается в области мионеврального синапса нервно-мышечного препарата лягушки, что связывают с истощением запасов медиатора в терминали нервного волокна. Кроме того, если сравнить лабильность различных образований нервно-мышечного препарата, то окажется, что функциональная подвижность мионеврального синапса самая низкая (рис. 69). В связи с этим в синапсе быстрее наступает утомление, как в структуре с более низкой лабильностью.

Отечественные физиологи И. М. Сеченов, И. П.Павлов, А. А. Ухтомский, Л. А. Орбели к проблеме утомления целостного организма подходили с позиций ведущей роли в ней центральной нервной системы. В организме, единство которого обеспечивается совместной деятельностью центральных и периферических нервных механизмов, утомление развивается раньше всего в нервных центрах.

На быстроту наступления утомления при длительном выполнении физической или умственной работы оказывают влияние режим жизни человека, условия его питания, сна, состояния центральной нервной системы, степень тренированности и т. д.

В конце прошлого столетия физиологи начали изучать отдельные проявления утомления. Итальянский ученый Моссо предложил эргографический метод исследования у человека процесса утомления, наступающего при мышечной работе. С помощью прибора эргографа было изучено влияние ритма выполняемой работы и величины поднимаемого груза на скорость возникновения утомления. Сущность эргографического метода состоит в том, что обследуемому предлагают путем разгибания и сгибания пальца верхней конечности, фиксированной в приборе, поднимать и опускать определенной величины груз в ритме ударов метронома. Движения пальца регистрируют на барабане кимографа. Кривую мышечных сокращений, записанную с помощью эргографа, называют эргограммой (рис. 70). Было установлено, что на развитие утомления в первую очередь оказывает влияние ритм выполняемой работы.

И. М. Сеченов изучал утомление, регистрируя сокращение мышц при поднятии груза на эргографе, сконструированном им самим. И. М. Сеченов обнаружил, что работоспособность утомленной руки во время ее отдыха восстанавливается полнее и лучше в том случае, если в этот период выполняет работу другая рука. Такое же влияние на работоспособность утомленной руки оказывает раздражение индукционным током афферентных нервов кисти другой руки, а также работа ногами, связанная с подъемом тяжести, и вообще двигательная активность.

Анализ установленных фактов позволил И. М. Сеченову прийти к заключению о том, что отдых, сопровождающийся умеренной работой мышечных групп, является более эффективным средством борьбы с утомлением двигательного аппарата, чем покой - пассивный отдых . В физиологии появилось понятие активный отдых .

Увеличение работоспособности после активного отдыха обусловлено повышением возбудимости нейронов центральной нервной системы под влиянием нервных импульсов, поступающих от проприорецепторов, а также адаптационно-трофическим воздействием симпатической нервной системы на утомленные мышечные группы (И. М. Сеченов, Л. А. Орбели).

Таким образом, лучшим способом борьбы с утомлением является смена формы труда, смена одного вида деятельности другим.

Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

Сила мышц. Сила - мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила), при изометрическом - максимальным напряжением, которое она может развить (статическая сила).

Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

Напряжение, которое могут развивать миофибриллы , определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина , так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

Величина сокращения снижается также при утомлении мышцы.

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

Физиологический поперечник мышцы - длина поперечного разреза мышцы, перпендикулярного ходу ее волокон.

В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой (рис. 83).

Рис. 83. Анатомический (а-а) и физиологический (б-б) поперечники мышц с разным расположением волокон:


А - параллельноволокнистый тип; Б - одноперистый; В - двуперистый; Г - многоперистый.

Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

Много, -одно, -и двухперистые мышцы имеют большую силу и выносливость (мало утомляются), но ограниченную способность к укорачиванию, а остальные виды мышц хорошо укорачиваются, но быстро утомляются.

Сравнительным показателем силы разных мышц является абсолютная мышечная сила - отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Она определяется при тетаническом раздражении и при оптимальном исходном растяжении мышцы. У сельскохозяйственных животных абсолютная сила скелетных мышц колеблется от 5 до 15 кг-сил, в среднем 6-8 кг-сил на 1см2 площади физиологического поперечника. В процессе мышечной работы поперечник мышцы увеличивается и, следовательно, возрастает сила данной мышцы.

Работа мышц. При изометрическом и изотоническом сокращении мышца совершает работу.

Оценивая деятельность мышц, обычно учитывают только производимую ими внешнюю работу.

Работа мышцы, при которой происходит перемещение груза и костей в суставах называется динамической.

Работа (W) может быть определена как произведение массы груза (Р) на высоту подъема (h)

W= P·h Дж (кг/м, г/см)

Установлено, что величина работы зависит от величины нагрузки. Зависимость работы от величины нагрузки выражается законом средних нагрузок: наибольшая работа производится мышцей при умеренных (средних) нагрузках.

Максимальная работа мышцами выполняется и при среднем ритме сокращения (закон средних скоростей).

Мощность мышцы определяется как величина работы в единицу времени. Она достигает максимума у всех типов мышц так же при средних нагрузках и при среднем ритме сокращения. Наибольшая мощность у быстрых мышц.

Утомление мышц. Утомление - временное снижение или потеря работоспособности отдельной клетки, ткани, органа или организма в целом, наступающее после нагрузок (деятельности). Утомление мышц происходит при их длительном сокращении (работе) и имеет определенное биологическое значение, сигнализируя о истощении (частичном) энергетических ресурсов.

При утомлении понижаются функциональные свойства мышцы: возбудимость, лабильность и сократимость. Высота сокращения мышцы при развитии утомления постепенно снижается. Это снижение может дойти до полного исчезновения сокращений. Понижаясь, сокращения делаются все более растянутыми, особенно за счет удлинения периода расслабления: по окончании сокращения мышца долго не возвращается к первоначальной длине, находясь в состоянии контрактуры (крайне замедленное расслабление мышцы). Скелетные мышцы утомляются раньше гладких. В скелетных мышцах сначала утомляются белые волокна, а потом красные.

Из различных представлений о механизме утомления одной из наиболее ранних теорий, объясняющих утомление, была теория истощения, предложенная К. Шиффом. Согласно этой теории причиной утомления служит исчезновение в мышце энергетических веществ, в частности гликогена. Однако, детальное изучение показало, что в утомленных до предела мышцах содержание гликогена еще значительно. В дальнейшем Е. Пфлюгером была выдвинута теория засорения органа продуктами рабочего распада (теория отравления). Согласно этой теории, утомление объясняется накоплением большого количества молочной , фосфорной кислот и недостатком кислорода, а так же других продуктов обмена, которые нарушают обмен веществ в работающем органе и его деятельность прекращается.

Обе эти теории сформулированы на основании данных, полученных в экспериментах на изолированной скелетной мышце и объясняют утомление односторонне и упрощенно.

Дальнейшим изучением утомления в условиях целого организма установлено, что в утомленной мышце появляются продукты обмена веществ, уменьшается содержание гликогена, АТФ, креатинофосфата. Изменения наступают в сократительных белках мышцы. Происходит связывание или уменьшение сульфгидрильных групп актомиозина, в результате чего нарушается процесс синтеза и распада АТФ. Нарушения в химическом составе мышцы, находящейся в целостном организме, выражены в меньшей степени, чем в изолированной благодаря транспортной функции крови.

Исследованиями Н.Е. Введенского установлено, что утомление прежде всего развивается в нервно-мышечном синапсе в связи с низкой его лабильностью.

Быстрая утомляемость синапсов обусловлена несколькими факторами.

Во-первых, при длительном раздражении в нервных окончаниях уменьшается запас медиатора, а его синтез не поспевает за расходованием.

Во-вторых, накапливающиеся продукты обмена в мышце понижают чувствительность постсинаптической мембраны к ацетилхолину, в результате чего уменьшается величина постсинаптического потенциала. Когда он понижается до критического уровня, в мышечном волокне не возникает возбуждения.

И.М.Сеченов (1903)-, исследуя на сконструированном им эргографе для двух рук работоспособность мышц при поднятии груза, установил, что работоспособность утомленной правой руки восстанавливается полнее и быстрее после активного отдыха , т.е. отдыха сопровождаемого работой левой руки. Подобного же рода влияние на работоспособность утомленной руки оказывает сочетающееся с отдыхом раздражение индукционным током чувствительных (афферентных) нервных волокон кисти другой руки, а также работа ногами, связанная с подъемом тяжести, и вообще двигательная активность.

Таким образом, активный отдых, сопровождающийся умеренной работой других мышечных групп, оказывается более эффективным средством борьбы с утомлением двигательного аппарата, чем простой покой.

Причину наиболее эффективного восстановления работоспособности двигательного аппарата в условиях активного отдыха Сеченов с полным основанием связывал с действием на центральную нервную систему афферентных импульсов от мышечных, сухожильных рецепторов работающих мышц.

В организме в различных звеньях рефлекторной дуги утомление в первую очередь наступает в нервных центрах, особенно в клетках коры больших полушарий.

В настоящее время установлено, что функциональное состояние мышц находится под влиянием центральной нервной системы и прежде всего коры больших полушарий. Это влияние осуществляется через соматические нервы, вегетативную нервную систему и железы внутренней секреции.

По двигательным нервам к мышце поступают импульсы из спинного и головного мозга, вызывая ее возбуждение и сокращение, сопровождающиеся изменением физико-химических свойств и функционального состояния мышцы.

Импульсы, поступающие по симпатическим волокнам в мышцу, усиливают процессы обмена веществ, кровоснабжения и работоспособность мышцы. Такое же действие оказывают и медиаторы симпатической системы - адреналин и норадреналин.

Однако единой теории, объясняющей причины утомления, сущность утомления до настоящего времени нет, т.к. в естественных условиях утомление двигательного аппарата организма является многофакторным процессом.

Наступление утомления мышц можно задержать с помощью тренировки. Она развивает и совершенствует функциональные возможности всех систем организма: нервной, дыхательной, кровообращения, выделения и т.д.

При тренировке увеличивается объем мышц в результате роста и утолщения мышечных волокон возрастает мышечная выносливость. В мышце повышается содержание гликогена, АТФ и креатинфосфата, ускоряется течение процессов распада и восстановления веществ, участвующих в обмене. В результате тренировки коэффициент использования кислорода при работе мышц повышается, усиливаются восстановительные процессы вследствие активизации всех ферментативных систем, уменьшается расход энергии. При тренировке совершенствуется регуляторная функция центральной нервной системы, и в первую очередь, коры больших полушарий.