Физиологические свойства сердечной мышцы автоматия сердца. Свойства сердечной мышцы

Как всякая мышца, сердечная мышца обладает: возбудимостью, т. е. способностью отвечать возбуждением на раздражение, сократимостью. т. е. способностью сокращаться, и проводимостью, т. е. способностью проводить возбуждение. Кроме того, сердце обладает способностью к ритмической автоматии.

Возбудимость . Сердечная мышца способна возбуждаться электрическими, механическими, термическими и химическими раздражителями. При действии любого из этих раздражителей могут возникнуть возбуждение и сокращение сердечной мышцы. Для этого, однако, необходимо, чтобы сила раздражения была равна или превышала пороговую силу. Раздражения слабее пороговых не вызывают возбуждения и сокращения.

Возбуждение сердечной мышцы . О возбуждении мышечных клеток сердцем, как и любой другой возбудимой ткани, можно судить по изменению разности электрических потенциалов, существующей между возбужденным участком и невозбужденным или между протоплазмой клетки и ее внешней средой.

Рефрактерность сердечной мышцы . Во время возбуждения сердечная мышца утрачивает способность отвечать второй вспышкой возбуждения на искусственное раздражение или на приходящий к ней импульс от очага автоматии. Такое состояние невозбудимости называют абсолютной рефрактерностью.

Сокращение сердечной мышцы . Возбуждение сердечной мышцы вызывает ее сокращение, т. е. увеличение ее напряжения или укорочение длины мышечных волокон. Сокращение сердечной мышцы так же, как и волна возбуждения в ней, длится дольше, чем сокращение и возбуждение скелетной мышцы, вызванные одним отдельным стимулом, например замыканием или размыканием постоянного тока. Период сокращения отдельных мышечных волокон сердца примерно соответствует длительности потенциала действия. При частом ритме деятельности сердца укорачивается и продолжительность потенциала действия, и длительность сокращения.

Механизм и скорость проведения возбуждения в сердце . Проведение возбуждения в миокарде осуществляется электрическим путем; потенциал действия, возникший в возбужденной мышечной клетке, служит раздражителем для соседних клеток.

Амплитуда потенциала действия в мышечных клетках сердца в 4-5 раз превышает пороговый уровень деполяризации мембраны, необходимый для того, чтобы возник в соседних клетках распространяющийся потенциал действии. Следовательно, потенциал действия по своей амплитуде сверхдостаточен для вызова возбуждения в соседних клетках. Ото является важным приспособлением, обеспечивающим надежность проведения возбуждения по проводящей системе и миокарду предсердий и желудочков.

Скорость проведения возбуждения в разных отделах сердца неодинакова. По миокарду предсердий у теплокровных животных возбуждение распространяется со скоростью 0,8-1 м/сек. В проводящей системе желудочков, состоящей из волокон Пуркине, скорость проведения возбуждения больше и достигает 2-4,2 м/сек. По миокарду желудочков возбуждение распространяется со скоростью 0,8-0,9 м/сек.

При переходе возбуждения от мышечных волокон предсердий к клеткам атриовентрикулярного узла происходит задержка проведения импульса. Недавние исследования Гоффмана и Кренфильда с применением микроэлектродной техники показали, что на коротком участке длиной 1 мм в верхней части атриовентрикулярного узла распространение возбуждения замедляется и оно проводится с очень малой скоростью — 0,02-0,05 м/сек.

Задержка проведения импульса в атриовентрикулярном узле обусловливает более позднее начало возбуждения желудочков по сравнению с предсердиями. Это имеет важное физиологическое значение для согласованной работы отделов сердца. Именно поэтому возбуждение желудочков начинается лишь но прошествии 0,12-0,18 секунды после того, как начинается возбуждение предсердий.

Миокард — сердечная мышца, представляет собой толстую часть сечения стенки сердца и содержит кардиомиоциты — сократительные клетки сердца. Миокард является уникальной мышцей в организме человека, больше такого типа мышц у человека нигде нет. От толщины миокарда зависит способность и сила сердца перекачивать кровь.

Свойства сердечной мышцы

Расположен миокард между наружным слоем эпикарда и внутренним слоем эндокарда.

Миокард является такой мышцей, которая в отличии от скелетных мышц приспособлена быть устойчивой к утомлению (усталости). Это достигается за счет того, что кардиомиоциты имеют большое количество митохондрий, что способствует поддержанию постоянного аэробного дыхания. Кроме того, миокард имеет большой запас крови по сравнению со своими размерами, обеспечивающей ее непрерывным потоком питательных веществ и кислородом, удаляя тем самым отходы метаболизма гораздо быстрее и эффективнее.

Основное назначение миокарда — это организация ритмических движений сердца, заключающееся в непрерывных автоматических сокращениях и расслаблениях мышечных волокн.

Строение миокарда

В некоторых характеристиках миокард имеет схожести с другими мышцами, но имеет множество своих особенностей. Кардиомиоциты гораздо короче своих родственников — миоцитов, имеют меньше ядер. Каждое мышечное волокно подсоединяется к плазменной мембране (сарколемме) с особыми трубочками (Т-канальцами). В этих Т-канальцах сарколемма шипована большим количеством кальциевых каналов, позволяющих протекать кальций-ионному обмену гораздо быстрее чем у нервно-мышечного соединения в скелетных мышцах. Сокращение мышечных клеток миокарда происходит за счет стимулирования потенциала действия потоком ионов кальция.

Как и другие мышцы, миокард состоит из саркомеров, которые являются основными сократительными единицами мышц. Саркомер имеет длину от 1.6 до 2.2 мкм. Саркомер содержит светлые и темные полоски. В центре проходит темная полоска, которая имеет постоянную длину, равную 1.5 мкм. Саркомеров состоят из длинных, скользящих друг с другом, когда мышцы сокращаются и расслабляются, волокнистых белков. Основные два белка, обнаруженные в саркомерах это миозин , образующий густые нити, а также актин , который образует тонкие нити. Анатомически миозин имеет длинный волнистый хвост и шаровидную головку, которая связывается с актином. Головка миозина кроме того, связывается с АТФ, являющейся источником энергии для клеточного метаболизма, необходима для кардиомиоцитов, чтобы поддерживать их функции в нормальном состоянии. Совместно миозин и актин формируют миофибриллярные нити, которые представляют собой удлиненные, сократительные нити, находящиеся в мышечной ткани. Как и скелетные мышцы, миокард содержит белок миоглобин, который хранит кислород.

Внутри сердца, миокард имеет разную толщину. Так сердечные камеры с более толстым слоем миокарда способны перекачивать кровь под более большим давлением и силой, по сравнению с камерами имеющими более тонкие слои миокарда. Самый тонкий слой миокарда расположен в предсердиях, так как данные камеры в первую очередь заполняются кровью через пассивный кровоток. В правом желудочке миокард гораздо толще, так как данная часть сердечной мышцы должна перекачивать большой объем крови, возвращающуюся в легкие для насыщения кислородом. Самый толстый слой миокарда расположен в левом желудочке, так как данная часть сердца должна качать кровь через аорту по всей системе кровообращения.

Толщина миокарда также может меняться у каждого человека, в связи с перенесенными заболеваниями, она может быть толще и жестче, либо тоньше и стать дряблой. Например гипертония приводит к гипертрофии сердечной мышцы, когда клетки миокарда увеличивают адаптивный ответ в связи с высоким кровяным давлением. Гипертрофия сердечной мышцы в конце концов может привести к остановке сердца когда миокард становится настолько жестким, что сердце больше не может качать кровь. Дряблая (слабая) сердечная мышца миокард становится такой после перенесенных инфекций и инфарктов. Сердечная мышца в данном случае становится настолько слабой, но не справляется с перекачиванием крови, развивается сердечная недостаточность.

Возбуждение сердечной мышцы вызывает ее сокращение, т. е. увеличение ее напряжения или укорочение длины мышечных волокон. Сокращение сердечной мышцы так же, как и волна возбуждения в ней, длится дольше, чем сокращение и возбуждение скелетной мышцы, вызванные одним отдельным стимулом, например замыканием или размыканием постоянного тока. Период сокращения отдельных мышечных волокон сердца примерно соответствует длительности потенциала действия. При частом ритме деятельности сердца укорачивается и продолжительность потенциала действия, и длительность сокращения.

Как правило, всякая волна возбуждения сопровождается сокращением. Однако возможен и разрыв связи между возбуждением и сокращением. Так, при длительном пропускании через изолированное сердце раствора Рингера, из которого исключена соль кальция, ритмические вспышки возбуждения, а следовательно, и потенциалы действия, сохраняются, а сокращения прекращаются.

Строение сердечной мышцы человека, ее свойства и какие процессы проходят в сердце

Эти и ряд других опытов показывают, что ионы кальция необходимы для сократительного процесса, но не являются необходимыми для возбуждения мышцы.

Разрыв связи между возбуждением и сокращением.можно наблюдать также в умирающем сердце: ритмические колебания электрических потенциалов еще происходят, тогда как сокращения сердца уже прекратились.

Непосредственным поставщиком энергии, затрачиваемой в первый момент сокращения сердечной мышцы, как и скелетной мышцы, являются макроэргические фосфорсодержащие соединения - аденозинтрифосфат и креатинфосфат. Ресинтез этих соединений происходят за счет энергии дыхательного и гликолитического фосфорилирования, т. е. за счет энергии, поставляемой углеводами. В сердечной мышце преобладают аэробные процессы, идущие с использованием кислорода, над анаэробными, которые значительно более интенсивно происходят в скелетной мускулатуре.

Соотношение между исходной длиной волокон сердечной мышцы и силой их сокращения . Если увеличить приток раствора Рингера к изолированному сердцу, т. е. увеличить наполнение и растяжение стенок желудочков, то сила сокращения сердечной мышцы увеличивается. То же самое можно наблюдать, если подвергнуть небольшому растяжению полоску сердечной мышцы, вырезанную из стенки сердца: при растяжении сила ее сокращения увеличивается.

На основании подобных фактов установлена зависимость силы сокращения волокон сердечной мышцы от их длины перед началом сокращения. Эта зависимость положена и основу сформулированного Старлингом «закона сердца». Согласно данному эмпирически установленному закону, верному лишь для определенных условий, сила сокращения сердца тем больше, чем больше растяжение мышечных волокон в диастолу.

Лекции 2-й семестр.

Лекция № 1 Физиология сердечно-сосудистой системы.

К системе кровообращения относятся сердце и сосуды – кровеносные и лимфатические. Основное значение системы кровообращения состоит в снабжении кровью органов и тканей. Сердце представляет собой биологический насос, благодаря работе которого кровь движется по замкнутой системе сосудов. В организме человека имеется 2 круга кровообращения.

Большой круг кровообращения начинается аортой, которая отходит от левого желудочка, и заканчивается сосудами, впадающими в правое предсердие. Аорта дает начало крупным, средним и мелким артериям. Артерии переходят в артериолы, которые заканчиваются капиллярами.

Капилляры широкой сетью пронизывают все органы и ткани организма. В капиллярах кровь отдает тканям кислород и питательные вещества, а из них в кровь поступают продукты обмена веществ, в том числе и углекислый газ.

Физиологические свойства сердечной мышцы.

Капилляры переходят в венулы, кровь из которых попадает в мелкие, средние и крупные вены. Кровь от верхней части туловища поступает в верхнюю полую вену, от нижней – в нижнюю полую вену. Обе эти вены впадают в правое предсердие, где заканчивается большой круг кровообращения

Малый круг кровообращения (легочный) начинается легочным стволом, который отходит от правого желудочка и несет в легкие венозную кровь. Легочный ствол разветвляется на две ветви, идущие к левому и правому легкому. В легких легочные артерии делятся на более мелкие артерии, артериолы и капилляры. В капиллярах кровь отдает углекислый газ и обогащается кислородом. Легочные капилляры переходят в венулы, которые затем образуют вены. По четырем легочным венам артериальная кровь поступает в левое предсердие.

Сердце – полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на левую и правую половины. Горизонтальная перегородка вместе с вертикальной делит сердце на четыре камеры. Верхние камеры – предсердия, нижние – желудочки.

Стенка сердца состоит из трех слоев. Внутренний слой представлен эндотелиальной оболочкой (эндокард , выстилает внутреннюю поверхность сердца). Средний слой (миокард ) состоит из поперечнополосатой мышцы. Наружная поверхность сердца покрыта серозной оболочкой (эпикард ), являющейся внутренним листком околосердечной сумки – перикарда. Перикард (сердечная сорочка) окружает сердце, как мешок, и обеспечивает его свободное движение.

Клапаны сердца. Левое предсердие от левого желудочка отделяет двустворчатый клапан . На границе между правым предсердием и правым желудочком находится трехстворчатый клапан . Клапан аорты отделяет ее от левого желудочка, а клапан легочного ствола отделяет его от правого желудочка.

При сокращении предсердий (систола ) кровь из них поступает в желудочки. При сокращении желудочков кровь с силой выбрасывается в аорту и легочный ствол. Расслабление (диастола ) предсердий и желудочков способствует наполнению полостей сердца кровью.

Значение клапанного аппарата. Во время диастолы предсердий предсердно-желудочковые клапаны открыты, кровь, поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью. При этом исключается возврат крови в полые и легочные вены. Это связано с тем, что в первую очередь сокращается мускулатура предсердий, образующая устья вен. По мере наполнения полостей желудочков кровью створки предсердно-желудочковых клапанов плотно смыкаются и отделяют полость предсердий от желудочков.

В результате сокращения сосочковых мышц желудочков в момент их систолы сухожильные нити створок предсердно-желудочковых клапанов натягиваются и не дают им вывернуться в сторону предсердий.

К концу систолы желудочков давление в них становится больше давления в аорте и легочном стволе. Это способствует открытию полулунных клапанов аорты и легочного ствола , и кровь из желудочков поступает в соответствующие сосуды.

Таким образом, открытие и закрытие клапанов сердца связано с изменением величины давления в полостях сердца. Значение же клапанного аппарата состоит в том, что он обеспечивает движение крови в полостях сердца в одном направлении.

Основные физиологические свойства сердечной мышцы.

Возбудимость. Сердечная мышца менее возбудима, чем скелетная. Реакция сердечной мышцы не зависит от силы наносимых раздражений. Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.

Проводимость. Возбуждение по волокнам сердечной мышцы распространяется с меньшей скоростью, чем по волокнам скелетной мышцы. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков – 0,8-0,9 м/с, по проводящей системе сердца – 2,0-4,2 м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем – сосочковые мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая движение крови из полостей желудочков в аорту и легочный ствол.

К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм

Рефрактерный период. Сердце имеет значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в период ее активности. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы (0,1-0,3с), сердечная мышца не способна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматизм. Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм.

Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизма.

Сердечная мышца обеспечивает жизнедеятельность всех тканей, клеток и органов. Транспорт веществ в организме осуществляется благодаря постоянной циркуляции крови; она же обеспечивает и поддержание гомеостаза.

Строение сердечной мышцы

Сердце представлено двумя половинами - левой и правой, каждая из которых состоит из предсердья и желудочка. Левая половина сердца нагнетает а правая - венозную. Поэтому сердечная мышца левой половины значительно толще правой. Мышцы предсердий и желудочков разделены фиброзными кольцами, которые имеют атриовентрикулярные клапаны: двухстворчатый (левая половина сердца) и трехстворчатый (правая половина сердца). Данные клапаны во время сокращения сердца предупреждают возврат крови в предсердье. На выходе аорты и легочной артерии размещаются полумесячные клапаны, которые предупреждают возврат крови в желудочки во время общей диастолы сердца.

Сердечная мышца принадлежит к поперечнополосатой Поэтому эта мышечная ткань имеет те же свойства, что и скелетные мышцы. Мышечное волокно состоит из миофибрилл, саркоплазмы и сарколеммы.

Благодаря сердцу обеспечивается циркуляция крови по кровеносным сосудам. Ритмическое сокращение мышц предсердий и желудочков (систола) чередуется с ее расслаблением (диастола). Последовательная смена систолы и диастолы составляет цикл Сердечная мышца работает ритмично, что обеспечивается системой, проводящей возбуждение в разных отделах сердца

Физиологические свойства сердечной мышцы

Возбудимость миокарда — это способность ее реагировать на действия электрических, механических, термических и химических раздражителей. Возбуждение и сокращение сердечной мышцы наступает тогда, когда раздражитель достигает пороговой силы. Раздражения слабее порогового не эффективны, а сверхпороговые не изменяют силы сокращения миокарда.

Возбуждение мышечной ткани сердца сопровождается появлением Он укорачивается при учащении и удлиняется при замедлении сокращений сердца.

Возбужденная сердечная мышца на короткое время утрачивает способность отвечать на дополнительные раздражения или импульсы, поступающие из очага автоматии. Такая невозбудимость называется рефрактерностью. Сильные раздражители, которые действуют на мышцу в период относительной рефрактерности, вызывают внеочередное сокращение сердца — так называемую экстрасистолу.

Сократимость миокарда имеет особенности в сравнении со скелетной мышечной тканью. Возбуждение и сокращение в сердечной мышце длятся дольше, чем в скелетной. В сердечной мышце преобладают аэробные процессы ресинтеза Во время диастолы происходит автоматическое изменение одновременно в нескольких клетках в разных частях узла. Отсюда возбуждение распространяется по мускулатуре предсердий и достигает атриовентрикулярного узла, который считают центром автоматии ІІ порядка. Если выключить синоатриальный узел (наложением лигатуры, охлаждением, ядами), то через некоторое время желудочки начнут сокращаться в более редком ритме под влиянием импульсов, возникающих в атриовентрикулярном узле.

Проведение возбуждения в разных отделах сердца неодинаковое. Следует сказать, что у теплокровных животных скорость проведения возбуждения по мышечным волокнам предсердий составляет около 1,0 м/с; в проводящей системе желудочков до 4,2 м/с; в миокарде желудочков до 0,9 м/с.

Характерной особенностью проведения возбуждения в сердечной мышце является то, что потенциал действия, возникший в одном участке мышечной ткани, распространяется на соседние участки.

КРОВО - И ЛИМФООБРАЩЕНИЕ

Доставка кислорода и питательных веществ к тканям и клет­кам млекопитающих животных и человека, а также выведение продуктов их жизнедеятельности обеспечиваются кровью, цир­кулирующей по замкнутой сердечно-сосудистой системе, состоя­щей из сердца и двух кругов кровообращения: большого и мало­го. Большой круг кровообращения начинается от левого желудоч­ка сердца, из которого артериальная кровь поступает в аорту. Пройдя по артериям, артериолам, капиллярам всех органов, кро­ме легких, она отдает им кислород и питательные вещества, а за­бирает углекислоту и продукты метаболизма. Затем кровь соби­рается в венулы и вены и через верхнюю и нижнюю полые вены поступает в правое предсердие.

Малый крут кровообращения начинается с правого желудоч­ка сердца, откуда венозная кровь направляется в легочную арте­рию. Пройдя через легочные капилляры, кровь освобождается от углекислоты, оксигенируется и уже в качестве артериальной по­ступает через легочные вены в левое предсердие.

Физиология сердца Свойства сердечной мышцы

Сердечная мышца обладает следующими свойствами: 1)автоматией - способностью сердца ритмически сокра­щаться под влиянием импульсов, возникающих в нем самом; 2)воз­будимостью - способностью сердца приходить в состояние воз­буждения под действием раздражителя; 3)проводимостью - спо­собностью сердечной мышцы проводить возбуждение; 4)сократи­мостью - способностью изменять свою форму и величину под дей­ствием раздражителя, а также растягивающей силы или крови.

Автоматия

Субстратом автоматии в сердце является специфическая щечная ткань, илипроводящая система сердца, которая состоит изсинусно-предсердного (синоатриального)(СА) узла, располо­женного в стенке правого предсердия у места впадения в него верхней полой вены,предсердно-желудочкового (атриовентрикулярного)узла, расположенного в межпредсердной перегородке на границе предсердий и желудочков. От атриовентрикулярного узла начинается пучокГиса. Пройдя в толщу межжелудочковой перегородки, он делится на правую и левую ножки, заканчиваю­щиеся конечными разветвлениями -волокнами Пуркинье. Вер­хушка сердца не обладает автоматией, а лишь сократимостью, так как в ней отсутствуют элементы проводящей системы сердца.

В нормальных условиях водителем ритма, или пейсмекером, является синоатриальный узел. Частота разрядов синоатриально­го узла в покое составляет 70в 1минуту. Атриовентрикулярный узел -это водитель ритма второго порядка с частотой 40 - 50в 1 минуту. Он берет на себя роль водителя ритма, если по каким-ли­бо причинам возбуждение от СА не может перейти на предсердия при атриовентрикулярной блокаде или при нарушении проводя­щей системы желудочков. Если поражены все основные водители ритма, то очень редкие импульсы (20имп/с) могут возникать в во­локнах Пуркинье -это водитель ритма 3-го порядка.

Следовательно, существует градиент автоматии сердца, со­гласно которому степень автоматии тем выше, чем ближе распо­ложен данный участок проводящей системы к синусному узлу.

Электрическая активность клеток миокарда и проводящей системы сердца

Потенциал действия кардиомиоцитов начинается с быстрой риверсии мембранного потенциала, составляющего -90мВ и со­здаваемого за счет К + -потенциала, до пика ПД (+30мВ) (рис.11). Этофаза быстрой деполяризации, обусловленная коротким зна­чительным повышением проницаемости дляNa" 1 ", который лави­нообразно устремляется в клетку. Фаза быстрой деполяризации очень короткая и составляет всего 1-2мс. Начальный входNа + быстро инактивируется, однако деполяризация мембраны про­должается за счет активации медленных натрий-кальциевых ка­налов, а вход Са 2+ приводит к развитиюплато ПД - это специ­фическая особенность клеток миокарда. В этот период быстрые натриевые каналы инактивируются и клетка становится абсо­лютно невозбудима. Этофаза абсолютной рефрактерности. Од­новременно происходит активация калиевых каналов, а выходя­щие из клетки ионы К + создаютфазу быстрой реполяризации мембраны.

Ускорение процесса реполяризации происходит за счет за­крытия кальциевых каналов. В конце периода реполяризации по­степенно закрываются калиевые каналы и реактивируются на­триевые. Это приводит к восстановлению возбудимости кардиомиоцита и возникновению относительной рефракторной фазы. Длительность ПД кардиомиоцита составляет 200 - 400мс.

Р
ис.
11. Схемы потенциалов действия различных отделов сердца, кривой сокращения и фаз возбудимости сердечной мышцы: А - схема потенциала действия клетки миокарда (/),кривой сокра­щения (II) и фаз возбудимости (III) сердечной мышцы; 1 -потенциал действия клетки миокарда: / -быстрая деполяризация; 2 -пик, 3 - плато, 4 - быстрая ре поляризация;II - кривая сокращения: а -фаза сокращения,б - фаза расслабления;III - кривая возбудимости: 5 -абсолютная рефракторная фаза, б -отно­сительная рефракторная фаза, 7 -фаза супернормальной возбудимости;Б - схема потенциала действия клетки пейсмекера (синоаурикулярного узла): МДП -максимальный диастолический потенциал; МДД -медлен­ная диастолическая деполяризация

Калий-натриевый насос, создающий потенциал покоя или мембранный потенциал миокардиоцита, может быть инактивирован под действием сердечных гликозидов (препараты наперстян­ки, строфантина), которые приводят также к повышению внутри­клеточной концентрации Na + , снижению интенсивности обмена внутриклеточногоCa 2+ на внеклеточныйNа + , накоплению Ca 2+ в клетке. В результате сократимость миокарда становится больше. Ее можно увеличить и за счет повышения внеклеточной концент­рации Са 2+ и с помощью веществ (адреналин, норадреналин),ус­коряющих вход Са 2+ во время ПД. Если удалить Са 2+ из внешней среды или заблокировать вход Ca 2+ во время ПД с помощью таких веществ -антагонистов кальция, как верапамил, нифедипин и др., то сократимость сердца уменьшается.

Клетки проводящей системы сердца и, в частности, клетки пейсмекера, обладающие автоматией, в отличие от клеток рабо­чего миокарда-кардиомиоцитов могут спонтанно деполяризоваться до критического уровня. В таких клетках за фазой реполяризации следует фаза медленной диастолической деполяриза­ции. (МДД), которая приводит к снижению МП до порогового уровня и возникновению ПД. МДД -это местное, нераспрост­раняющееся возбуждение, в отличие от ПД, который является

распространяющимся возбуждением.

Таким образом, пейсмекерные клетки отличаются от кардиомиоцитов: 1)низким уровнем МП -около 50-70мВ, 2)наличи­ем МДД, 3)близкой к пикообразному потенциалу формой ПД,4)низкой амплитудой ПД - 30-50мВ без явления риверсии (овершута).

Особенности электрической активности пейсмекерных кле­ток обусловлены целым рядом процессов, происходящих на их мембране. Во-первых, эти клетки даже в условиях «покоя» имеют повышенную проницаемость для ионов Na + , что приводит к сни­жению МП. Во-вторых, в период реполяризации на мембране от­крываются только медленные натрий-кальциевые каналы, так как быстрые натриевые каналы из-за низкого МП уже инактивирова-ны. В клетках синоатриального узла в период реполяризации бы­стро инактивируются открытые калиевые каналы, но повышает­ся натриевая проницаемость, на фоне которой и возникает МДД, а затем и ПД. Потенциал действия синоатриального узла распро­страняется на все остальные отделы проводящей системы сердца.

Таким образом, синоатриальный узел навязывает всем «ведо­мым» отделам проводящей системы свой ритм. Если возбуждение не поступает от главного пейсмекера, то «латентные» водители ритма, т.е. клетки сердца, обладающие автоматией, берут на себя функцию нового пейсмекера, в них также зарождается МДД и ПД, а сердце продолжает свою работу.

Автоматия - способность сердечной мышцы к ритмическому сокращению без всяких внешних воздействий под влиянием импульсов, возникающих в самом сердце. Благодаря автоматии автономное (извлеченное из организма) сердце способно некоторое время самостоятельно сокращаться. Импульсы в сердечной мышце возникают благодаря деятельности атипических мышечных волокон, заложенных в некоторых участках миокарда - внутри них спонтанно генерируются электрические импульсы определенной частоты, распространяющиеся затем по всему миокарду. Первый такой участок находится в области устьев полых вен и называется синусовым , или синоатриальным, узлом. Он производит импульсы с частотой 60-80 раз в минуту и является главным центром автоматии сердца. Второй участок находится в толще перегородки между предсердиями и желудочками и называется предсердно-желудочковым, или атриовентрикулярным , узлом. Третий участок - пучок Гиса - атипические волокна, лежащие в межжелудочковой перегородке. От пучка Гиса отходят тонкие волокна атипической ткани - волокна Пуркинье, разветвляющиеся в миокарде желудочков. Все участки атипической ткани способны самостоятельно генерировать импульсы; в синусовом узле их частота самая высокая, его называют водителем ритма первого порядка, другие центры автоматии подчиняются этому ритму. Совокупность всех центров автоматии составляют проводящую систему сердца, благодаря которой волна возбуждения, возникшая в синусном узле, последовательно распространяется по всему миокарду и обеспечивает последовательное сокращение отделов сердца.

Возбудимость сердечной мышцы проявляется в способности сердца приходить в состояние возбуждения под действием различных раздражителей (химических, механических, электрических и др.). Потенциал действия, возникающий в одной клетке, передается другим клеткам, что приводит к распространению возбуждения по всему сердцу.

Сократимость - способность полости сердца сокращаться, обусловленная свойством клеток миокарда отвечать на возбуждение сокращением. Это свойство сердечной мышцы позволяет сердцу выполнять механическую работу по перекачиванию крови по сосудам: при сокращении полости сердца давление крови в сердечных камерах возрастает, и кровь под давлением поступает в артерии. Работа сердечной мышцы подчиняется закону «все или ничего»: если на сердечную мышцу оказывать раздражающее действие различной силы, мышца каждый раз отвечает максимальным сокращением. Если сила раздражителя не достигает порогового значения, то сердечная мышца не отвечает сокращением.

В работе сердца как насоса выделяют три фазы, сокращение предсердий, сокращение желудочков и пауза, когда желудочки и предсердия одновременно расслаблены. Сокращение сердца называется систолой , расслабление - диастолой. Во время систолы предсердий кровь выталкивается в желудочки, так как обратный кровоток в вены невозможен из-за захлопывания клапанов, во время систолы желудочков кровь устремляется в большой и малый круги кровообращения (обратному току в предсердия препятствуют митральный и трехстворчатый клапаны, расположенные между предсердиями и желудочками), а за время диастолы камеры сердца находятся в расслабленном состоянии и вновь заполняются кровью. За одну минуту сердце взрослого здорового человека сокращается примерно 60-70 раз. Ритмичное чередование сокращения и расслабления каждого из отделов сердца обеспечивает неутомляемость сердечной мышцы.

Иннервация сердца очень сложна. Она осуществляется вегетативной нервной системой - блуждающим и симпатическими нервами, в составе которых имеются как чувствительные, так и двигательные волокна. В стенке самого сердца находятся нервные сплетения, состоящие из нервных узлов и нервных волокон. Двигательные нервы сердца осуществляют четыре основные функции: замедление, ускорение, ослабление и усиление деятельности сердца. Эти нервы относятся к вегетативной нервной системе. Таким образом, сердечная мышца, обладая способностью к самостоятельным сокращениям, подчиняется также «командам сверху» - регулирующему воздействию нервной системы, обеспечивающему оптимальную адаптацию сердечной деятельности потребностям организма в конкретной ситуации.

Сосудистая система. Кровеносные сосуды представляют собой систему полых эластичных трубок различного строения, диаметра и механических свойств, по которым протекает кровь. Сосуды подразделяются на артерии, вены и капилляры.

Артерии имеют толстые упругие стенки, состоящие из грех слоев. Наружный слой представляет собой соединительнотканную оболочку, средний слой состоит из гладкой мышечной ткани и содержит соединительнотканные эластические волокна, внутренний слой образован эндотелием, под которым расположена внутренняя эластическая мембрана. Эластические элементы артериальной стенки образуют единый каркас, работающий как пружина и обусловливающий эластичность артерий.

Разветвляясь, артерии переходят в артериолы , которые отличаются от артерий наличием только одного слоя мышечных клеток и могут регулировать скорость кровотока за счет сужения или расширения просвета. Артериола переходит в прекапилляр, в котором мышечные клетки разрознены и не составляют сплошного слоя. От него отходят многочисленные капилляры - самые мелкие кровеносные сосуды, которые соединяют артериолы с венулами (мелкими разветвлениями вен). Благодаря очень тонкой стенке капилляров в них происходит обмен различными веществами между кровью и клетками тканей. В зависимости от потребности в кислороде и других питательных веществах разные ткани имеют разное количество капилляров. Капилляры могут находиться в активном (открытом) и пассивном (закрытом) состоянии. При активизации обменных процессов или потребности в усиленной теплоотдаче объем крови, проходящей через орган, может увеличиваться за счет активизации дополнительного числа капилляров. В покое и при уменьшении теплоотдачи значительное количество капилляров переходит в пассивное состояние, уменьшая таким образом объем кровотока. Состояние капиллярной сети регулируется вегетативной нервной системой в зависимости от потребностей организма.

Сливаясь, капилляры переходят в посткапилляры , которые но строению аналогичны прекапилляру. Посткапилляры сливаются в венулы с просветом 40-50 мкм. Венулы объединяются в более крупные сосуды, несущие кровь к сердцу, - вены. Они, так же как и артерии, имеют стенки, состоящие из трех слоев, по содержат меньше эластических и мышечных волокон, поэтому менее упруги, их просвет поддерживается током крови. Вены имеют клапаны (полулунные складки внутренней оболочки), которые открываются по току крови, что способствует движению крови в одном направлении. Схематически строение кровеносных сосудов представлено на рис. 4.6.

Рис. 4.6.

Человек и все позвоночные животные имеют замкнутую кровеносную систему. Кровеносные сосуды сердечно-сосудистой системы образуют две основные подсистемы: большой и малый круги кровообращения (рис. 4.7).

Сосуды большого круга кровообращения соединяют сердце со всеми другими частями тела. Большой круг кровообращения начинается в левом желудочке, откуда выходит аорта, а заканчивается в правом предсердии, куда впадают полые вены. Как часть большого круга кровообращения выделяют третий (сердечный) круг, снабжающий кровью само сердце. Он состоит из двух венечных, или коронарных, артерий, отходящих от аорты, и впадает в правое предсердие через венечную пазуху.

Сосуды малого круга кровообращения переносят кровь от сердца к легким и обратно. Малый круг кровообращения начинается правым желудочком, из которого выходит легочный ствол, а заканчивается левым предсердием, в которое впадают легочные вены.

Рис. 4.7.

1 - сердце; 2 - малый (легочный) круг кровообращения; 3 - большой круг кровообращения

Кардиомиоциты изолированы друг от друга и контактируют в области вставочных дисков, где соприкасаются мембраны соседних кардиомиоциов.

Коннесксоны- в мембране соседних клеток образуются эти структуры за счет белков конексинов. Коннексон окружают 6 таких белков, внутри коннексона - канал, который позволяет проходит ионам, таким таким образом электрический ток распространяется от одной клетки к другой. “f область имеет сопротивление 1,4 ом на см2(низкое). Возбуждение охватывает кардиомиоциты одновременно. Они функционирую как функциональный сенсициы. Нексусы очень чувствительны к недостатку кислорода, к действию катехоламинов, к стрессовым ситуациям, к физической нагрузке. Это может вызывать нарушение проведения возбуждения в миокарде. В экспериментальных условиях нарушение плотных контактов моно получить при помещении кусочков миокарда в гипертонический раствор сахарозы. Для ритмической деятельности сердца важна проводящая система сердца - эта система состоит из комплекса мышечных клеток, образующих пучки и узлы и клетки проводящей системы отличаются от клеток рабочего миокарда - они бедны миофибриллами, богаты саркоплазмой и содержат высокое содержание гликогена. Эти особенности при световой микроскопии делают их более светлыми с малой поперечной исчерченностью и они были названы атипическими клетками.

В состав проводящей системы входят:

1. Синоатриальный узел(Кейт-Флека)(в парвом предсердии у места впадения верхней полой вены)

2. Атрии-вентрикулярный узел(Ашоф-Тавара)(лежит в правом предсердии на границе предсердие-желудочек - задняя стенка правого предсердия)

Эти два узла связаны внутрипредсердными трактами -

3. Предсердные тракты

Пердний с ветвью Бахмена к левому предсердию

Средний тракт(Венкебаха)

Задний тракт(Тореля)

4. Пучок Гиса(отходит от атриовентрикулярного узла. Проходит через фиброзную ткань и обеспечивает связь миокарда предсердия с миокардом желудочка. Проходит в межжелудочковую перегородку, где разделяется на правую и илевую ножку пучка Гиса)

5. Правая и левая ножки пучка Гиса(они идут вдоль межжелудочковой перегородки. Левая ножка имеет две ветви - переднюю и заднюю. Конечными разветвлениями будут являтся волокна Пуркинье)

6. Волокна Пуркинье

В проводящей системе сердца, которая образована видоизмененными типами мышечных клеток имеются три вида клеток - пейсмекерны(P), переходные, клетки Пуркинье.

1. P -клетки . Находятся в сино-артриальном узле, меньше в атриовентрикулярном ядре. Это самые мелкие клетки, в них мало т - фибрилл и митохондрий, т-сстема отстутствует, l. система развита слабо. Основной функцией этих клеток является генерация потенциала действия за счет врожденного свойства медленной диастолической деполяризации. В них происходит периодическое снижение мембранного потенциала, которое приводит их к самовозбуждению.

2. Переходные клетки осуществляют предачу возбуждения в области атривентрикуярного ядра. Они обнаруживаются между P клетками и клетками Пуркинье. Эти клетки вытянутой формы, у них отсутствует сарко-плазматический ретикулум. Эти клетки облают замедленной скоростью проведения.

3. Клетки Пуркинье широкие и короткие, в них больше миофибрилл, лучше развит саркоплазматический ретикулум, T система отсутствует.

Электрические свойства клеток миокарда. Клетки миокарда, как рабочего, так и проводящей системы обладают мембранным потенциалам покоя и снаружи мембрана кардиомиоцита заряжена «+», а внутри «-». Это обусловлено ионной ассиметрией - внутри клеток в 30 раз больше ионов калия, а снаружи в 20-25 раз больше ионов натрия. Это обеспечивается постоянной работой натриево-калиевым насосом. Измерение мембранного потенциала показывает, что клетки рабочего миокарда имеетпотенциал - 80-90 мВольт. В клетках проводящей системы - 50-70 мВольт. При возбуждении клеток рабочего миокарда возникает потенциал действия(5 фаз) - 0, 1, 2, 3, 4.

0. При возбуждении возникает процесс деполяризации кардиомиоцитов, что связано с открытием натриевых каналов и повышение проницаемости для ионов натрия, которые устремляются внутрь кардиомиоцитов. При снижении мембранного потенциала о 30-40 милиВольт происходить открытие медленных натриево-кальцевых каналов. Через них могут входить натрий и дополнительно кальций. Это обеспечивает процесс деполяризации и овершут(реверсия) 120 мВольт.

1. Начальная фаза реполяризации . Закрытие натриевых каналов и некоторое повышение проницаемости к ионам хлора.

2. Фаза Плато . Процесс деполяризации затормаживается. Связана с усилением выхода кальция внутрь. Он задерживает восстановление заряда на мембране. При возбуждении снижается калиевая проницаемость(в 5 раз). Калий не может выходить из кардиомиоцитов.

3. Когда кальцевые каналы закрываются происходит фаза быстрой реполяризации . За счет восстановления поляризации к ионам калия и мембранный потенциал возвращается к исходному уровню и наступает диастолический потенциал

4. Диастолический потенциал постоянно стабилен

В клетках проводящей системы есть отличительные особенности потенциала.

1. Сниженный мембранный потенциал в диастолический период(50-70мВ)

2. Четвертая фаза не является стабильной и отмечается постепенное снижение мембранного потенциала к пороговому критическому уровню деполяризации и в диастолу постепенно медленно продолжает снижаться достигая критического уровня деполяризации при котором произойдет самовозбуждение П-клеток. В P-клетках происходит усиление проникновения ионов натрия и снижение выхода ионов калия. Повышается проницаемость ионов кальция. Эти сдвиги в ионном составе приводят к тому, что мембранный потенциал в P-клетках снижается до порогового уровня и p-клетка самовозбуждается обеспечивая возникновение потенциала действия. Плохо выражена фаза Плато. Фаза ноль плавно переходи ТВ процесс реполяризации, который восстанавливает диастолический мембранный потенциал, а дальше цикл повторяется вновь и P-клетки переходят в состояние возбуждения. Наибольшой возбудимостью обладают клетки сино-атриального узла. Потенциал в нем особо низок и скорость диастолической деполяризации наиболее высок.. Это будет влиять на частоту возбуждения. P- клетки синусного узла генерируют частоту до 100 ударов в мин. Нервная система(симпатическая система) подавляют действие узла(70 ударов). Симпатическая система может повышать автоматию. Гуморальные факторы- адреналин, норадреналин. Физические факторы - механический фактор - растяжение, стимулируют автоматию, согревание, тоже увеличивает автоматию. Все это применяется в медицине. На этом основано мероприятие прямого и непрямого массажа сердца. Область атриовентрикулярного узла тоже обладает автоматией. Степень автоматии атриовентрикулярного узла выражена значительно меньше и как правило она в 2 раза меньше, чем в синусном узле - 35-40. В проводящей системе желудочков импульсы тоже могут возникать(20-30 в минуту). ПО ходу проводящей системы возникает постипенное снижение уровня автоматии, что получило название градиента автоматии. Синусный узел - центр автоматии первого порядка.

Станеус - ученый . Наложение лигатур на сердце лягушки(3х камерное). У правого предсердия имеется венозныц синус, где лежит аналог синусного узла человека. Станеус накладывал 1ую лигатуру между венозным синусом и предсердием. Когда лигатура затягивалась сердце прекращала свою работу. Вторая лигатура накладывалась Станеусом между предсердиями и желудочком. В этой зоне находится аналог атрии-вентрикулярного узла, но 2ая лигатура имеет задачу не отделения узла, а его механическое возбуждение. Ее накладывают постепенно, возбуждая атриовентрикулярный узел и при этом возникает сокраение сердца. Желудочки получают вновь сокращаться под действием атрии-вентрикулярного узла. С частотой в 2 раза меньше. Если наложить 3ю лигатуру , которая отделяет атривентрикулярный узел возникает остановка сердца. Все это дает нам возможность показать, что синусный узел - водитель ритма, атриовентрикулярный узел обладает меньшей автоматией. В проводящей системе существуе убывающий градиент автоматии.

Физиологические свойства сердечной мышцы.

Возбудимость, проводимость,сократимость

Под возбудимостью сердечной мышцы понимается ее свойство отвечать на действие раздражителей пороговой или над пороговой силы процессом возбуждения. Возбуждение миокарда можно получить на действие химических, механических, температурных раздражений. Эта способность отвечать на действие разных раздражителей используется при массаже сердца(механическое), введение адреналина, кардиостимуляторы. Особенностью реакции сердца на действие раздражителя, играет то что действует по принципу «Все или ничего». Сердце отвечает максимальным импульсом уже на пороговый раздражитель. Продолжительность сокращения миокарда в желудочкх составляет 0,3с. Это обусловлено длительным потенциалом действия, который тоже длится до 300мс. Возбудимость сердечной мышцы может падать до 0 - абсолютно рефрактерная фаза. Никакие раздражители не могут вызвать повторного возбуждения(0,25-0,27с). Сердечная мышца абсолютно невозбудима. В момент расслабления(диастолы)абсолютная рефрактерная переходит в относительную рефрактерную 0,03-0,05с. В этот момент можно получить повторное раздражение на над пороговые раздражители. Рефрактерный период сердечной мышцы длится и совпадает по времени столько, сколько длится сокращение. Вслед за относительной рефрактерностью имеется небольшой период повышенной возбудимости - возбудимость ставновится выше исходного уровня - супер нормальная возбудимость. В эту фазу сердце особо чувствительно к воздействию других раздражителей(смогут возникать др. раздражители или экстрасистолы- внеочередные систолы). Наличие длительного рефрактерного периода должно оградить сердце от повторных возбуждений. Сердце выполняет насосную функцию. Промежуток между нормальным и внеочередным сокращением укорачивается. Пауза может быть нормальной или удлиненной.Удлиненную паузу называют компенсаторной. Причина экстрасистолов - возникновение других очагов возбуждения - атриовентрикулярный узел, элементы желудочковой части проводящей системы, клетки рабочего миокарда, Это может быть связано с нарушением кровоснабжением, нарушением проведения в сердечной мышцей, но все дополнительные очаги - эктопические очаги возбуждения. В зависимости от локализации - разные экстрасистолы - синусные, предсредные, атриовентрикулярные. Экстрасистолы желудочка сопровождаются удлиненной компенсаторнйо фазой. 3 дополнительное раздражение - причина внеочередного сокращения. Вовремя экстрасистола сердце утрачивает возбудимость. К ним приходит очередной импульс из синусного узла. Пауза нужна для восстановления нормального ритма. Когда в сердце происходит сбой сердце пропускает одно нормальное сокращение и дальше возвращается к нормальному ритму.

Проводимость - способность проводить возбуждение. Скорость проведения возбуждения в разных отделах неодинакова. В миокарде предсердий - 1 м/c и время проведения возбуждения занимает 0,035 с

Скорость проведения возбуждения

Миокард 1 м/c 0,035

A-V узел 0,02 - 0-05 м в с. 0,04 с

Проведение система желудочков - 2-4,2 м в с. 0,32

В сумме от синусного узла до миокарда желудочка - 0,107 с

Миокард желудочка - 0,8-0,9 м в с

Нарушение проведения сердца приводит к развитию блокад - синусной, атривентрикулярной, пучка гиса и его ножек. Синусный узел может выключится.. Включится ли атривентрикулярный узел как водитель ритма? Синусные блокады встречаются редко. Больше в атриовентрикулярных узлах. Удлиение задержки(больше 0,21с) возбуждение доходит до желудочка, хоть и замедленно. Выпадение отдельных возбуждений, которые возникают в синусном узле НАПРИМЕР из 3 доходит только 2 - вторая степень блокады. 3я блокада - предсердия и желудочки работают несогласованно. Блокада ножек и пучка - блокада желудочков. Чаще встречаются блокады ножек пучка Гиса и соответственно желудочек запаздывает за другим.

Сократимость

Кардиомиоциты включают фибриллы, саркомеры. Есть продольные трубочки и Т трубочки наружной мембраны, котоыре входят внутрь на уровне мембраны я. Они широкие. Сократительная фугкция кардиомиоцитов связана с белками миозином и актином. На тонких актиновых белках - система тропонин и тропомиозин. Это не дает головкам миозин сцепляется с головками миозина. Снятие блокировки - ионами кальция. По т трубочкам открываются кальцевые каналы. Повышение кальция в саркоплазме снимает тормозной эффект актина и миозина. Мостики миозина перемещают тонике нити к центру. Миокард подчиняется в сократительной функции 2м законам - все или ничего. Сила сокращения зависит от исходной длины кардиомиоцитов - Франк и Старалинг. Если миоциты предварительно растянуты, то они отвечают большей силой сокращения. Растяжение зависит от наполнения кровью. Чем больше- тем сильней. Этот закон формулируют как - систола есть функция диастолы. Это важный приспособительный механизм. Это синхронизирует работу правого и левого желудочка.