Физиология сердца свойства сердечной мышцы. Физиологические свойства сердечной мышцы автоматия сердца

Сердечная мышца обладает возбудимостью, проводимостью, сократимостью (как и скелетная мышца) и автоматией. Автоматия – это способность клеток или тканей возбуждаться под влиянием импульсов возникающих в них самих без внешних раздражителей.

В сердце импульсы возникают и распространяются по проводящей системе сердца. В состав проводящей системы входит:

1) синусный узел (располагается в устье падения полых вен). Это водитель ритмов 1го порядка. Он генерирует импульсы с частотой 60-80 в мин.

2) атриовентрикулярный узел, располагается на границе предсердий желудочками. Генерирует импульсы с частотой 40-60 в мин.

3) правые, левые ножки пучка Гисса. Проходят по межжелудочковой перегородке. Генерирует импульсы с частотой 15-30 в мин.

4) волокна Пуркинье. Располагаются в толще стенок желудочков. 5-10 в мин.

Скорость проведения возбуждений по миокард предсердия и желудочков составляет 1 м/с. Возбуждение сердечной мышцы, как и др. возбудимых тканей сопровождается изменением разности элек-х потенциалов между внутренней и наружной поверхностью мышечного волокна. Продолжительность потенциала действия изменяется в зависимости от ритма сокращений. После возбуждения сердечная мышца становится невозбудимой на раздражение любой силы. Это состояние не возбудимости называется абсолютной рефрактерностью.

32. Сердечный цикл

Сокращения отделов сердца называется систолой, а расслабление – диастолой.

Началом является сокращение предсердий. Это 1 фаза. При систоле предсердий давление крови повышается в них до 5-8 мм.рт.ст. и кровь поступает из предсердий в желудочки, где давление ниже. Длится систола 0,1 с. Затем наступает систола желудочка. А предсердия в этот момент расслабляются и начинается в этом состоянии 0,8 с. Систола желудочков состоит из 2х фаз: 1) фаза напряжения; 2) фаза изгнания.

Фазу напряжения в желудочках р продолжает повышаться, створчатые клапаны смыкаются, что препятствует обратному току крови, а когда р становится в желудочках выше, чем в аорте ствола, кровь под большим давлением выбрасывается в сосуды. При расслаблении р в аорте лёгочном стволе становится выше, смыкаются полулунные клапаны и кровь движется по сосудам. Систолы живут (желудочк) 0,3 сек, диаст – 0,5 сек. Диастола желудочков частично совпадает с диастолой предсердий. Полный сердечный цикл 0,8 сек.

РЕГУЛЯЦИЯ РАБОТЫ СЕРДЦА

Осуществляется нервным и гуморальным путём. Основной центр – сосудодвигательный, который находится в продолговатом мозге. К сердцу подходит симпатические и парасимпатические волокна. Симпатические волокна увеличивают силу, частоту и амплитуду сердечных сокращений. Парасимпатические волокна оказывают противоположный эффект. В регуляции сердца участ и кора мозга. Так у спортсменов на старте чсс соответствует частоте как во время бега. Различные эмоциональные проявления человека: гнев, радость, печаль – приводит к изменению чсс. На сердце реализуются многие межсердечные рефлексы, благодаря которым обеспечивается соответствие сердечной деятельности потребностям организма.

В самом сердце есть также большое количество рецепторов, которые располагаются во всех … слоях. Раздражение этих рецепторов изменяет работу сердца. Например, при растяжении кровью правого предсердия идёт учащение сердечных сокращений (рефлексы Бейнбриджа). Гуморальная регуляция усиливает и способствует увеличению чсс гормоны: адреналин, норадреналин, гормон щитовидной железы – тираксил. Замедляет работу сердца – ацетилхолин, имеет значение и содержание электролитов. Например, избыток К угнетает деятельность сердца. Избыток Са наоборот.

СОСУДИСТАЯ СИСТЕМА

Ближайшие к сердцу артерии выполняют функции проведения крови. Они превращают её в прерывистый ток в непрерывный. Поэтому в стенке крупных артерий развиты эластичные волокна и мембраны. Эти сосуды называются артериями эластичного типа. В средних и мелких артериях инерция сердечного выброса ослабевает. И для дальнейшего движения крови требуется собственное сокращение стенки. В стенках этих артерий много гладких мышечных волокон. Это артерии мышечного типа. Далее следуют артериолы. В местах их разветвлений находятся скопления мышечных клеток – это свинкторы. Благодаря им обеспечивается перераспределение кровотока в пользу работающих органов. Капилляры служат для обмена газа и питательных веществ. Благодаря медленному кровотоку и огромной площади соприкосновения с окружающими тканями капилляры обеспечивают обменные процессы. По венам кровь движется в противоположном направлении, чтобы не было ритоградного движения крови, в венах находятся клапаны. Все сосуды соответственно их строению и функции делят на 3 группы: 1) присердечные сосуды: начинаются и заканчиваются в отделах сердца (аорта, верхние и нижние полые вены, лёгочный ствол и лёгочные вены);

2) магистральные сосуды служат для распределения крови по организму. К ним относят экстроорганные артерии типа мышечных (волок), ЖКТ

3) внутриорганные сосуды (внутриорганные артерии и вены) и микроциркуляторные русла (артериолы, капилляры).

ВЕНТИЛЯЦИЯ ЛЁГКИХ

Это объём выдыхаемого и вдыхаемого воздуха в единицу времени. Обычно измеряют минутный объём дыхания (мод). При спокойном дыхании мод составляет 6-9 л.

Вентиляция лёгких зависит от глубины и частоты дыхания.

Газообмен в лёгких осуществляется в альбиолах. Вентиляция альбиол ‹ вентиляции лёгких на величину мёртвого пространства. При нагрузке более эффективно глубокое дыхание чем поверхностное, т.к. большая часть объёма воздуха при поверхностном дыхании тратится на вентиляцию мёртвого пространства.

МОД = 800 мл

ДВИЖЕНИЕ КРОВИ ПО СОСУДАМ

Благодаря сокращениям сердца кровь выталкивается в большой и малый круги кровообращения, т.к. кровеносные сосуды представляют собой систему трубок, то движение крови подчиняется законам гидродинамики. Согласно этим законам движения жидкости определяется: давлением, под которым движется жидкость и сопротивлением, которое испытывает жидкость при трении о стенки сосуда. Количество жидкости, протекающее через трубу прямо пропорционально разности давлений в начале и в конце трубы и обратно пропорционально сопротивлению.

Т.к. р в конце системы = 0, следовательно, Q= P/R

P – кол-во ср. р в аорте;

Q – кол-во крови изгоняемое сердцем в мин.;

R – величина сосудистого сопротивления;

В отличие от движения жидкости по трубам кровь движется прерывистой струёй во время систолы. Но уже довольно быстро ток крови становится не прерывистым. Благодаря упругости стенок аорты, лёгочного ствола и крупных артерий. Часть кинетической энергии во время систолы затрачивается на растяжение стенок крупных артериальных сосудов. Когда систола заканчивается, стенки артерий в силу своей эластичности возвращается к исходному состоянию и обеспечивают р, которое в фазу диастолы перемещает кровь по сосудам. Периферическое сопротивление сосудистой системы складывается из множества сопротивлений каждого сосуда. Наибольшее сопротивление возникает в артериолах, поэтому систему артериол называют сосудами сопротивления или резистивными сосудами. Вследствие сопротивления уровень р в крови меняется. В крупных сосудах р падает ≈ на 10% от исходного уровня. А в артериолах и капиллярах на 85%. В малом круге кровообращения сопротивление в 5 ‹ чем в большом. Однако и в малом круге наибольшее сопротивление оказывают мельчайшие артерии и артериолы.

Под сердечным циклом понимают последовательные чередования сокращения (систола) и расслабления (диастола) полостей сердца, в результате чего происходит перекачивание крови из венозного русла в артериальное.

В сердечном цикле выделяют три фазы: 1. Систола предсердий и диастола желудочков;

2. Диастола предсердий и систола желудочков;

3. Общая диастола предсердий и желудочков.

Сердечный толчок – это удар сердца о грудную клетку. Он обнаруживается при внешнем осмотре животного и пальпации с левой стороны грудной клетки. Сердечный толчок возникает вследствие того, что во время систолы желудочков сердце напрягается, становится более плотным и упругим, приподнимается(т. к. в грудной полости сердце как бы подвешено на крупных кровеносных сосудах) ,а у кошек и собак и слегка поворачивается вокруг своей оси, ударяясь о грудную стенку верхушкой (верхушечный сердечный толчок). При клиническом осмотре животного обращают внимание на топографию сердечного толчка, на его силу и частоту.

Частота и ритм сердечных сокращений. Под частотой сокращений понимают количество сердечных циклов в 1 минуту. Частоту сокращений можно определить по числу сердечных толчков, т.е. систол желудочков в течение 1 минуты. Учащение сердечных сокращений – тахикардия, урежение — брадикардия.

Под ритмом сердечной деятельности понимают правильное согласование во время сердечных циклов. Сердечная деятельность может быть ритмичной (одинаковые интервалы) и неритмичной. Изменения сердечного ритма называют аритмиями. Аритмии могут быть физиологическими и патологическими. У здоровых животных физиологические аритмии наблюдаются во время дыхательного цикла и называются дыхательной аритмией. Физиологическая аритмия может быть у молодых животных (в период полового созревания). Оба вида аритмии не требуют специального лечения.

Тоны сердца — это звуки, которые возникают во время работы сердца. Основной источник звуковых явлений – работа клапанного аппарата, звуки возникают во время захлопывания клапанов. Тоны сердца можно услышать приложив к грудной клетке аппарат для прослушивания- стетоскоп или фонендоскоп. Прослушиваются тоны сердца в тех местах, где клапаны проецируются на поверхность грудной клетки. Эти четыре точки (по количеству клапанов) называются точками наилучшей слышимости. При анализе сердечных тонов обращают внимание на их топографию. силу, частоту. ритмичность и наличие или отсутствие дополнительных- патологических – звуков, которые называются шумами. Исследование тонов сердца является основным клиническим методом изучения состояния клапанного аппарата сердца. Атриовентрикулярные клапаны захлопываются в начале систолы желудочков, а полулунные – в начале диастолы желудочков. Различают два основных тона сердца: первый (систолический), второй (диастолический).

Первый тон – систолический, совпадает с систолой желудочков, он низкий, глухой, протяжный. Второй тон — диастолический, совпадает с началом диастолы желудочков, звук короткий, высокий, звонкий, отрывистый. Третий и четвертый тоны сливаются с основными при прослушивании и поэтому не различаются.

Электрокардиография

ЭКГ – это метод регистрации электрических потенциалов, возникающих при работе сердца. Запись биотоков сердца называется электрокардиограммой.

В ветеринарной практике для снятия ЭКГ применяют различные способы наложения электродов, или отведения. Стандартный способ отведения биопотенциалов – наложение электродов на конечности:

1. Первое отведение: пясти левой и правой грудных конечностей – регистрируются потенциалы предсердий.

2. Второе отведение: пясть правой грудной и плюсна левой тазовой конечности — регистрируется возбуждение желудочков.

3. Третье отведение: пясть левой грудной и плюсна левой тазовой конечности — регистрируется отведение левого желудочка.

ЭКГ состоит из ровной изопотенциальной линии. которая соответствует потенциалу покоя, и пяти зубцов- P, Q ,R ,S ,T. Три зубца (P, R ,T), идущие вверх от изопотенциальной линии, являются положительными, а два зубца (Q. S). направленные вниз от нее — отрицательными.

  • Зубец R — сумма потенциалов предсердий. Возникает в период распространения возбуждения по предсердиям.
  • Интервал P-Q — время прохождения возбуждения от предсердий к желудочкам.
  • Зубец Q — возбуждение внутренних слоев мышцы желудочков, правой сосочковой мышцы, перегородки. верхушки левого и основания правого желудочков.
  • Зубец R — распространение возбуждения на мышцы обоих желудочков.
  • Зубец S — охват возбуждением желудочков.
  • Интервал S-T отражает отсутствие разницы потенциалов в период. когда миокард охвачен возбуждением. В норме изопотенциален.
  • Зубец Т — фаза восстановления (реполяризации) миокарда желудочков.
  • QRS- время, в течение которого возбуждение успевает полностью охватить мышцы желудочков.
  • QRST- время возбуждения и восстановления миокарда желудочков.
  • Интервал T-P-возбуждение в желудочках уже закончилось, а в предсердиях еще не началось.Называется электрической диастолой сердца.
  • Интервал R-R (или Р-Р) соответствует полному циклу сердечной деятельности.

При анализе ЭКГ учитывают высоту зубцов, их направленность от изопотенциальной линии и продолжительность интервалов.

ЭКГ в комплексе с другими клиническими методами исследования применяется для диагностики заболеваний сердца, особенно таких. которые связаны с расстройством возбудимости проводимости сердечной мышцы.

Физиология кровообращения.

Система кровообращения — это непрерывное движение крови по замкнутой системе полостей сердца и сети кровеносных сосудов, которые обеспечивают все жизненно важные функции организма.

Сердце представляет собой первичный насос, который придает энергию движения крови. Это сложный пункт пересечения разных потоков крови. В нормальном сердце смешивания этих потоков не происходит. Сердце начинает сокращаться примерно через месяц после зачатия, и с этого момента его работа не прекращается до последнего мгновения жизни.

За время, равное средней продолжительности жизни, сердце осуществляет 2,5 млрд. сокращений, и при этом оно перекачивает 200 млн. литров крови. Это уникальный насос, который имеет размер с мужской кулак, а средний вес у мужчины составляет 300г, а у женщины — 220г. Сердце имеет вид тупого конуса. Длина его составляет 12-13 см, ширина 9-10,5 см, а передне-задний размер равен 6-7см.

Система кровеносных сосудов составляет 2 круга кровообращения.

Большой круг кровообращения начинается в левом желудочке аортой. Аорта обеспечивает доставку артериальной крови к различным органам и тканям. При этом от аорты отходят параллельные сосуды, которые приносят кровь к разным органам. артерии переходят в артериоллы, а артериоллы - в капилляры. Капилляры обеспечивают всю сумму обменных процессов в тканях. Там кровь становится венозной, она оттекает от органов. Она притекает к правому предсердию по нижней и верхней полой венам.

Малый круг кровообращения начинается в правом желудочке лёгочным стволом, который делится на правую и левую легочную артерии. Артерии несут венозную кровь к легким, где будет происходить газообмен. Отток крови из легких осуществляется по легочным венам (2 от каждого лёгкого),которые несут артериальную кровь в левое предсердие. Основная функция малого круга- транспортная, кровь доставляет клеткам кислород, питательные вещества, воду, соль, а из тканей выводит углекислый газ и конечные продукты обмена.

Кровообращение - это самое важное звено в процессах газообмена. С кровью транспортируется тепловая энергия - это теплообмен с окружающей средой. За счет функции кровообращения происходит перенос гормонов и других физиологически активных веществ. Это обеспечивает гуморальную регуляцию деятельности тканей и органов. Современные представления о системе кровообращения были изложены Гарвеем, который в 1628 году опубликовал трактат о движении крови у животных. Он пришел к выводу о замкнутости системы кровообращения. Используя метод пережатия кровеносных сосудов, он установил направленность движения крови . От сердца, кровь движется по артериальным сосудам, по венам, кровь движется к сердцу. Деление строится по направлению течения, а не по содержанию крови. Также были описаны основные фазы сердечного цикла. Технический уровень не позволял в то время обнаружить капилляры. Открытие капилляров было сделано позднее (Мальпиге), который подтвердил предположения Гарвея о замкнутости кровеносной системы. Гастро-васкулярная система- это система каналов, связанных с основной полостью у животных.

Эволюция системы кровообращения.

Кровеносная система в форме сосудистых трубок появляется у червей, но у червей в сосудах циркулирует гемолимфа и эта система еще не замкнута. Обмен осуществляется в лакунах - это межтканевое пространство.

Далее происходит замкнутость и появление двух кругов кровообращения. Сердце в своем развитии проходит стадии - двухкамерного - у рыб (1 предсердие, 1 желудочек). Желудочек выталкивает венозную кровь. В жабрах происходит газообмен. Далее кровь идет в аорту.

У земноводных сердце трёхкамерное (2 предсердия и 1 желудочек); правое предсердие получает венозную кровь и проталкивает кровь в желудочек. Из желудочка выходит аорта, в которой имеется перегородка и она делит кровоток на 2 потока. Первый поток идет в аорту, а второй — в легкие. После газообмена в легких кровь поступает в левое предсердие, а затем в желудочек, где происходит смешивание крови.

У рептилий заканчивается дифференцировка клеток сердца на правую и левую половину, но у них имеется отверстие в межжелудочковой перегородке и кровь смешивается.

У млекопитающих полное разделение сердца на 2 половины. Сердце можно рассматривать как орган, образующий 2 насоса - правый - предсердие и желудочек, левый - желудочек и предсердие. Здесь уже не происходит смешивания протоков крови.

Сердце расположено у человека в грудной полости, в средостении между двумя плевральными полостями. Спереди сердце ограничено грудиной, сзади — позвоночником. В сердце выделяют верхушку, которая направлена влево, вниз. Проекция верхушки сердца находится на 1 см внутрь от левой средней ключичной линии в 5ом межреберье. Основание направленно вверх и вправо. Линия соединяющая верхушку и основание - это анатомическая ось, которая направлена сверху вниз, справа налево и спереди назад. Сердце в грудной полости лежит ассиметрично. 2/3 слева от срединной линии, верхняя граница сердца - верхний край 3го ребра, а правая граница на 1 см кнаружи от правого края грудины. Оно практически лежит на диафрагме.

Сердце - это полый мышечный орган, который имеет 4 камеры - 2 предсердия и 2 желудочка. Между предсердиями и желудочками находятся атрио-вентрикулярные отверстия, в которых будут находится атрио-вентрикулярные клапаны. Атрио-вентрикулярные отверстия образованы фиброзными кольцами. Они отделяют миокард желудочков от предсердий. Место выхода аорты и легочного ствола образованы фиброзными кольцами. Фиброзные кольца - скелет, к которому прикрепляются его оболочки. В отверстиях, в области выхода аорты и легочного ствола имеются полулунные клапаны.

Сердце имеет 3 оболочки.

Наружная оболочка- перикард . Он построен из двух листков - наружного и внутреннего, который срастается со внутренней оболочкой и называется миокард. Между перикардом и эпикардом образуется пространство, заполненное жидкостью. В любом движущемся механизме возникают трения. Для более легкого движения сердца ему необходима эта смазка. Если есть нарушения, то возникают трения, шумы. В этих участках начинают образовываться соли, которые замуровывают сердце в «панцирь». Это уменьшает сократительную способность сердца. В настоящее время хирурги удаляют, скусывая этот панцирь, освобождая сердце, для возможности осуществления сократительной функции.

Средний слой — мышечный или миокард. Он является рабочей оболочкой и составляет основную массу. Именно миокард выполняет сократительную функцию. Миокард относится к исчерченным поперечно полосатым мышцам, состоит из индивидуальных клеток - кардиомиоцитов, которые связаны между собой в трехмерную сеть. Между кардиомиоцитами образуются плотные контакты. Миокард прикрепляется к кольцам фиброзной ткани, фиброзному скелету сердца. Он имеет прикрепление к фиброзным кольцам. Миокард предсердий образует 2 слоя - наружный циркулярный, который окружает оба предсердия и внутренний продольный, который индивидуален для каждого. В области впадения вен - полых и легочных образуются кольцевые мышцы, которые формируют сфинктеры и при сокращении этих кольцевых мышц кровь из предсердия не может поступить обратно в вены. Миокард желудочков образован 3мя слоями - наружным косым, внутренним продольным, и между этими двумя слоями распологается циркулярный слой. Миокард желудочков начинается от фиброзных колец. Наружный конец миокарда идет косо к верхушке. На верхушке этот наружный слой образует завиток(vertex), его и волокна переходят во внутренний слой. Между этими слоями находятся циркулярные мышцы, отдельные для каждого желудочка. Трёхслойное строение обеспечивает укорочение и уменьшение просвета (диаметра). Это и обеспечивает возможность выталкивания крови из желудочков. Внутренняя поверхность желудочков выстлана эндокардом, которая переходит в эндотелий крупных сосудов.

Эндокард — внутренний слой — покрывает клапаны сердца, окружает сухожильные нити. На внутренней поверхности желудочков миокард образует трабекулярную сеть и сосочковые мышц и сосочковые мышцы связаны со створками клапанов(сухожильными нитями). Именно эти нити удерживают створки клапана и не дают выворачиваться им в предсердие. В литературе сухожильные нити называются сухожильными струнами.

Клапанный аппарат сердца.

В сердце принято различать атрио-вентрикулярные клапаны, расположенные между предсердиями и желудочками - в левой половине сердца это двухстворчатый, в правой - трёхстворчатый клапан, состоящий из трёх створок. Клапаны открываются в просвет желудочков и пропускают кровь из предсердий в желудочек. Но при сокращении клапан закрывается и возможность крови поступать обратно в предсердие утрачивается. В левом - величина давления намного больше. Более надежными являются структуры с меньшим числом элементов.

У места выхода крупных сосудов - аорта и легочный ствол — находятся полулунные клапаны, представленные тремя кармашками. При наполнении крови в кармашках, происходит закрытие клапанов, поэтому обратного движения крови не происходит.

Назначением клапанного аппарата сердца является обеспечение одностороннего тока крови. Поражение створок клапана приводит к недостаточности клапана. При этом наблюдается обратный ток крови в результате неплотного соединения клапанов, что нарушает гемодинамику. Границы сердца меняются. Получаются признаки развития недостаточности. Вторая проблема, связанная с областью клапанов, стенозирование клапанов - (стенозируется, например, венозное кольцо) - просвет уменьшается.Когда говорят о стенозе, значит говорят либо об атрио-вентрикулярных клапанах, либо о месте отхождения сосудов. Над полулунными клапанами аорты, из её луковицы, отходят коронарные сосуды. У 50% людей кровоток правой больше чем в левой, у 20% кровоток больше в левой чем в правой, 30 % имеют одинаковый отток как в правой, так и в левой коронарной артерии. Развитие анастомозов между бассейнами коронарных артерий. Нарушение кровотоков коронарных сосудов сопровождается ишемией миокарда, стенокардии, а полная закупорка приводит к омертвлению - инфаркту. Венозный отток крови идет по поверхностной системе вен, так называемый коронарный синус. Имеются также вены, которые непосредственно открываются в просвет желудочка и правого предсердия.

Сердечный цикл.

Сердечный цикл — это период времени, в течении которого происходит полное сокращение и расслабление всех отделов сердца. Сокращение - систола, расслабление - диастола. Продолжительность цикла будет зависеть от частоты сердечных сокращений. В норме частота сокращений колеблется от 60 до 100 ударов в минуту, но средняя частота составляет 75 ударов в минуту. Чтобы определить длительность цикла делим 60с на частоту.(60с / 75 с=0,8с).

Сердечный цикл состоит из 3х фаз:

Систола предсердий - 0,1 с

Систола желудочка - 0,3 с

Общая пауза 0,4 с

Состояние сердца в конце общей паузы. створчатые клапаны находятся в открытом состоянии, полулунные клапаны закрыты и кровь поступает из предсердий в желудочки. К концу общей паузы желудочки наполнены на 70-80% кровью. Сердечный цикл начинается с

систолы предсердий. В это время происходит сокращение предсердий, что необходимо для завершения наполнения желудочков кровью. Именно сокращение миокарда предсердий и повышение давления крови в предсердиях - в правом до 4-6 мм рт ст, а в левом до 8-12 мм рт ст. обеспечивает нагнетание дополнительной крови в желудочки и систола предсердий завершает наполнение желудочков кровью. Кровь обратно поступать не может, так как сокращаются кольцевые мышцы. В желудочках будет находится конечный диастолический объем крови . В среднем он составляет 120-130 мл, но у людей занимающихся физической нагрузкой до 150-180 мл, что обеспечивает более эффективную работу, этот отдел переходит в состояние диастолы. Далее идет систола желудочков.

Систола желудочков - наиболее сложная фаза сердечного цикла, продолжительностью 0,3 с. В систоле выделяют период напряжения . он длится 0,08 с и период изгнания . Каждый период подразделяется на 2 фазы -

период напряжения

1. фаза асинхронного сокращения - 0,05 с

2. фазы изометрического сокращения - 0,03 с. Это фаза изовалюмического сокращения.

период изгнания

1. фаза быстрого изгнания 0,12с

2. фаза медленного 0,13 с.

Систола желудочков начинается с фазы асинхронного сокращения. Часть кардиомиоцитов оказываются возбужденными и вовлекаются в процесс возбуждения. Но возникающее напряжение в миокарде желудочков обеспечивает повышение давления в нем. Эта фаза заканчивается закрытием створчатых клапанов и полость желудочков оказывается замкнутой. Желудочки наполнены кровью и полость их замкнута, а кардиомиоциты продолжают развивать состояние напряжения. Длина кардиомиоцита не может изменится. Это связано со свойствами жидкости. Жидкости не сжимают. При замкнутом пространстве, когда происходит напряжение кардиомиоциттов сжать жидкость невозможно. Длина кардиомиоцитов не меняется. Фаза изометрического сокращения. Сокращение при низменной длине. Эту фазу называют изовалюмической фазой. В эту фазу не меняется объем крови. Пространство желудочков замкнуто, повышается давление, в правом до 5-12 мм рт.ст. в левом 65-75 мм.рт.ст, при этом давление желудочков станет больше диастолического давления в аорте и легочном стволе и превышение давления в желудочках над давлением крови в сосудах приводит к открытию полулунных клапанов. Полулунные клапаны открываются и кровь начинает поступать в аорту и легочный ствол.

Наступает фаза изгнания. при сокращении желудочков кровь выталкивается в аорту, в легочный ствол, изменяется длина кардиомиоцитов, давлении повышает и на высоте систолы в левом желудочке 115-125 мм, в правом 25-30мм. Вначале фаза быстрого изгнания, а затем изгнание становится более медленным. За время систолы желудочков выталкивается 60 - 70 мл крови и вот это количество крови - систолический объем. Систолический объем крови =120-130 мл, т.е. в желудочках в конце систолы остается еще достаточный объем крови - конечный систолический объем и это своеобразный резерв, чтобы если потребуется - увеличить систолический выброс. Желудочки завершают систолу и в них начинается расслабление. Давление в желудочках начинает падать и кровь, которая выброшена в аорту, легочный ствол устремляется обратно в желудочек, но на своем пути она встречает кармашки полулунного клапана, которые наполняюсь закрывают клапан. Этот период получил название протодиастолический период - 0,04с. Когда полулунные клапаны закрылись, створчатые клапаны тоже закрыты, начинается период изометрического расслабления желудочков. Он длится 0,08с. Здесь происходит спад напряжения без изменения длины. Это вызывает понижение давления. В желудочках скопилась кровь. Кровь начинает давить на атрио-вентрикялрыне клапаны. Происходит их открытие в начале диастолы желудочков. Наступает период наполнения крови кровью — 0,25 с, при этом выделяют фазу быстрого наполнения - 0,08 и фазу медленного наполнения - 0,17 с. Кровь свободно из предсердий поступает в желудочек. Это пассивный процесс. Желудочки на 70-80% будут наполняться кровью и завершится наполнение желудочков уже следующей систолой.

Строение сердечной мышцы.

Сердечная мышца имеет клеточное строение и клеточное строение миокарда было установлено еще в 1850 году Келликером, но длительное время считалось, что миокард представляет собой сеть - сенцидий. И только электронная микроскопия подтвердила, что каждый кардиомиоцит имеет свою собственную мембрану и отделен от других кардиомиоцитов. Область контактов кардиомиоцитов - это вставочные диски. В настоящее время клетки сердечной мышцы подразделяют на клетки рабочего миокарда - кардиомиоциты рабочего миокрада предсердий и желудочков и на клетки проводящей системы сердца. Выделяют:

-переходные клетки

-клетки Пуркинье

Клетки рабочего миокарда принадлежат исчерченным мышечным клеткам и кардиомиоциты имеют вытянутую форму, длин достигает 50мкм, диаметр - 10-15 мкм. Волокна состоят из миофибрилл, наименьшей рабочей структурой которых является саркомер. Последний имеет толстые — миозиновые и тонкие - актиновые ветви. На тонких нитях имеются регуляторные белки - тропанин и тропомиозин. В кардииомиоцитах имеются также продольная система L трубочек и поперечные T трубочки. Однако Т трубочки, в отличии от Т-трубочек скелетных мышц, отходят на уровне мембран Z (в скелетных — на границе диска A и I). Соседние кардиомиоциты соединяются с помощью вставочного диска- область контакта мембран. При этом структура вставочного диска неоднородная. ВО вставочном диске можно выделить область щели(10-15Нм). Вторая зона плотного контакта - десмосомы. В области десмосом наблюдается утолщение мембраны, здесь же проходят тонофибриллы(нити связывающие соседние мембраны). Десмосомы имеют протяженность 400нм. Есть плотные контакты, они получили название нексусов, при котором происходит слияние наружных слоев соседних мембран, сейчас обнаружены - конексоны - скрепление за счет специальных белко - конексинов. Нексусы - 10-13%, эта область имеет очень низкое электрическое сопротивление 1,4 Ома на кВ.см. Это обеспечивает возможность передачи электрического сигнала с одной клетки на др. и поэтому кардиомиоциты включаются одновременно в процесс возбуждения. Миокард - функциональный сенсидий.

Физиологические свойства сердечной мышцы .

Кардиомиоциты изолированы друг от друга и контактируют в области вставочных дисков, где соприкасаются мембраны соседних кардиомиоциов.

Коннесксоны- это соединение в мембране соседних клеток. Образуются эти структуры за счет белков коннексинов. Коннексон окружают 6 таких белков, внутри коннексона образуется канал, который позволяет проходит ионам, таким таким образом электрический ток распространяется от одной клетки к другой. “f область имеет сопротивление 1,4 ом на см2(низкое). Возбуждение охватывает кардиомиоциты одновременно. Они функционирую как функциональный сенсициы. Нексусы очень чувствительны к недостатку кислорода, к действию катехоламинов, к стрессовым ситуациям, к физической нагрузке. Это может вызывать нарушение проведения возбуждения в миокарде. В экспериментальных условиях нарушение плотных контактов можно получить при помещении кусочков миокарда в гипертонический раствор сахарозы. Для ритмической деятельности сердца важна проводящая система сердца - эта система состоит из комплекса мышечных клеток, образующих пучки и узлы и клетки проводящей системы отличаются от клеток рабочего миокарда - они бедны миофибриллами, богаты саркоплазмой и содержат высокое содержание гликогена. Эти особенности при световой микроскопии делают их более светлыми с малой поперечной исчерченностью и они были названы атипическими клетками.

В состав проводящей системы входят:

1. Синоатриальный узел (или узел Кейт-Фляка), расположенный в правом предсердии у места впадения верхней полой вены

2. Атриовентрикулярный узел(или узел Ашоф-Тавара), который лежит в правом предсердии на границе с желудочком — это задняя стенка правого предсердия

Эти два узла связаны внутрипредсердными трактами.

3. Предсердные тракты

— передний — с ветвью Бахмена (к левому предсердию)

— средний тракт (Венкебаха)

— задний тракт (Тореля)

4. Пучок Гисса (отходит от атриовентрикулярного узла. Проходит через фиброзную ткань и обеспечивает связь миокарда предсердия с миокардом желудочка. Проходит в межжелудочковую перегородку, где разделяется на правую и илевую ножку пучка Гисса)

5. Правая и левая ножки пучка Гисса (они идут вдоль межжелудочковой перегородки. Левая ножка имеет две ветви - переднюю и заднюю. Конечными разветвлениями будут являться волокна Пуркинье).

6. Волокна Пуркинье

В проводящей системе сердца, которая образована видоизмененными типами мышечных клеток, имеются три вида клеток. пейсмейкерные (P), переходные клетки и клетки Пуркинье.

1. P -клетки . Находятся в сино-артриальном узле, меньше в атриовентрикулярном ядре. Это самые мелкие клетки, в них мало т - фибрилл и митохондрий, т-система отсутствует, l. система развита слабо. Основной функцией этих клеток является генерация потенциала действия за счет врожденного свойства медленной диастолической деполяризации. В них происходит периодическое снижение мембранного потенциала, которое приводит их к самовозбуждению.

2. Переходные клетки осуществляют передачу возбуждения в области атривентрикуярного ядра. Они обнаруживаются между P клетками и клетками Пуркинье. Эти клетки вытянутой формы, у них отсутствует саркоплазматический ретикулум. Эти клетки облают замедленной скоростью проведения.

3. Клетки Пуркинье широкие и короткие, в них больше миофибрилл, лучше развит саркоплазматический ретикулум, T-система отсутствует.

Электрические свойства клеток миокарда.

Клетки миокарда, как рабочего, так и проводящей системы, обладают мембранным потенциалам покоя и снаружи мембрана кардиомиоцита заряжена «+», а внутри «-». Это обусловлено ионной ассиметрией - внутри клеток в 30 раз больше ионов калия, а снаружи в 20-25 раз больше ионов натрия. Это обеспечивается постоянной работой натрий-калиевым насосом. Измерение мембранного потенциала показывает, что клетки рабочего миокарда имеют потенциал - 80-90 мВольт. В клетках проводящей системы - 50-70 мВольт. При возбуждении клеток рабочего миокарда возникает потенциал действия (5 фаз). 0 — деполяризация, 1 — медленная реполяризация, 2 -плато, 3 — быстрая реполяризация, 4 — потенциал покоя.

0. При возбуждении возникает процесс деполяризации кардиомиоцитов, что связано с открытием натриевых каналов и повышение проницаемости для ионов натрия, которые устремляются внутрь кардиомиоцитов. При снижении мембранного потенциала о 30-40 милиВольт происходить открытие медленных натриево-кальцевых каналов. Через них могут входить натрий и дополнительно кальций. Это обеспечивает процесс деполяризации или овершут(реверсия) 120 мВольт.

1. Начальная фаза реполяризации. Происходит закрытие натриевых каналов и некоторое повышение проницаемости к ионам хлора.

2. Фаза Плато. Процесс деполяризации затормаживается. Связана с усилением выхода кальция внутрь. Он задерживает восстановление заряда на мембране. При возбуждении снижается калиевая проницаемость(в 5 раз). Калий не может выходить из кардиомиоцитов.

3. Когда кальцевые каналы закрываются происходит фаза быстрой реполяризации. За счет восстановления поляризации к ионам калия и мембранный потенциал возвращается к исходному уровню и наступает диастолический потенциал

4. Диастолический потенциал постоянно стабилен.

В клетках проводящей системы есть отличительные особенности потенциала.

1. Сниженный мембранный потенциал в диастолический период(50-70мВ).

2. Четвертая фаза не является стабильной. Отмечается постепенное снижение мембранного потенциала к пороговому критическому уровню деполяризации и постепенно медленно продолжает снижаться в диастолу, достигая критического уровня деполяризации, при котором происходит самовозбуждение П-клеток. В P-клетках происходит усиление проникновения ионов натрия и снижение выхода ионов калия. Повышается проницаемость ионов кальция. Эти сдвиги в ионном составе приводят к тому, что мембранный потенциал в P-клетках снижается до порогового уровня и p-клетка самовозбуждается обеспечивая возникновение потенциала действия. Плохо выражена фаза Плато. Фаза ноль плавно переходи ТВ процесс реполяризации, который восстанавливает диастолический мембранный потенциал, а дальше цикл повторяется вновь и P-клетки переходят в состояние возбуждения. Наибольшей возбудимостью обладают клетки сино-атриального узла. Потенциал в нем особо низок и скорость диастолической деполяризации наиболее высок. Это будет влиять на частоту возбуждения. P-клетки синусного узла генерируют частоту до 100 ударов в мин. Нервная система(симпатическая система) подавляют действие узла(70 ударов). Симпатическая система может повышать автоматию. Гуморальные факторы- адреналин, норадреналин. Физические факторы - механический фактор - растяжение, стимулируют автоматию, согревание, тоже увеличивает автоматию. Все это применяется в медицине. На этом основано мероприятие прямого и непрямого массажа сердца. Область атриовентрикулярного узла тоже обладает автоматией. Степень автоматии атриовентрикулярного узла выражена значительно меньше и как правило она в 2 раза меньше, чем в синусном узле - 35-40. В проводящей системе желудочков импульсы тоже могут возникать(20-30 в минуту). ПО ходу проводящей системы возникает постипенное снижение уровня автоматии, что получило название градиента автоматии. Синусный узел - центр автоматии первого порядка.

Станеус - ученый . Наложение лигатур на сердце лягушки(трёхкамерное). У правого предсердия имеется венозный синус, где лежит аналог синусного узла человека. Станеус накладывал первую лигатуру между венозным синусом и предсердием. Когда лигатура затягивалась сердце прекращала свою работу. Вторая лигатура накладывалась Станеусом между предсердиями и желудочком. В этой зоне находится аналог атрии-вентрикулярного узла, но 2ая лигатура имеет задачу не отделения узла, а его механическое возбуждение. Ее накладывают постепенно, возбуждая атриовентрикулярный узел и при этом возникает сокраение сердца. Желудочки получают вновь сокращаться под действием атрии-вентрикулярного узла. С частотой в 2 раза меньше. Если наложить третью лигатуру, которая отделяет атриовентрикулярный узел, то возникает остановка сердца. Все это дает нам возможность показать, что синусный узел является главным водителем ритма, атриовентрикулярный узел обладает меньшей автоматией. В проводящей системе существует убывающий градиент автоматии.

Физиологические свойства сердечной мышцы.

К физиологическим свойствам сердечной мышцы относятся возбудимость, проводимость и сократимость.

Под возбудимостью сердечной мышцы понимается ее свойство отвечать на действие раздражителей пороговой или над пороговой силы процессом возбуждения. Возбуждение миокарда можно получить на действие химических, механических, температурных раздражений. Эта способность отвечать на действие разных раздражителей используется при массаже сердца (механическое воздействие), введение адреналина, кардиостимуляторы. Особенностью реакции сердца на действие раздражителя, играет то что действует по принципу «Все или ничего». Сердце отвечает максимальным импульсом уже на пороговый раздражитель. Продолжительность сокращения миокарда в желудочках составляет 0,3с. Это обусловлено длительным потенциалом действия, который тоже длится до 300мс. Возбудимость сердечной мышцы может падать до 0 - абсолютно рефрактерная фаза. Никакие раздражители не могут вызвать повторного возбуждения(0,25-0,27с). Сердечная мышца абсолютно невозбудима. В момент расслабления(диастолы)абсолютная рефрактерная переходит в относительную рефрактерную 0,03-0,05с. В этот момент можно получить повторное раздражение на над пороговые раздражители. Рефрактерный период сердечной мышцы длится и совпадает по времени столько, сколько длится сокращение. Вслед за относительной рефрактерностью имеется небольшой период повышенной возбудимости - возбудимость становится выше исходного уровня - супер нормальная возбудимость. В эту фазу сердце особо чувствительно к воздействию других раздражителей(смогут возникать др. раздражители или экстрасистолы- внеочередные систолы). Наличие длительного рефрактерного периода должно оградить сердце от повторных возбуждений. Сердце выполняет насосную функцию. Промежуток между нормальным и внеочередным сокращением укорачивается. Пауза может быть нормальной или удлиненной. Удлиненную паузу называют компенсаторной. Причина экстрасистолов - возникновение других очагов возбуждения - атриовентрикулярный узел, элементы желудочковой части проводящей системы, клетки рабочего миокарда, Это может быть связано с нарушением кровоснабжением, нарушением проведения в сердечной мышцей, но все дополнительные очаги - эктопические очаги возбуждения. В зависимости от локализации - разные экстрасистолы - синусные, предсредные, атриовентрикулярные. Экстрасистолы желудочка сопровождаются удлиненной компенсаторнйо фазой. 3 дополнительное раздражение - причина внеочередного сокращения. Вовремя экстрасистола сердце утрачивает возбудимость. К ним приходит очередной импульс из синусного узла. Пауза нужна для восстановления нормального ритма. Когда в сердце происходит сбой сердце пропускает одно нормальное сокращение и дальше возвращается к нормальному ритму.

Проводимость - способность проводить возбуждение. Скорость проведения возбуждения в разных отделах неодинакова. В миокарде предсердий - 1 м/c и время проведения возбуждения занимает 0,035 с

Скорость проведения возбуждения

Миокард — 1 м/c 0,035

Aтриовентрикулярный узел 0,02 - 0-05 м/с. 0,04 с

Проведение система желудочков - 2-4,2 м/с. 0,32

В сумме от синусного узла до миокарда желудочка - 0,107 с

Миокард желудочка - 0,8-0,9 м/с

Нарушение проведения сердца приводит к развитию блокад - синусной, атривентрикулярной, пучка Гисса и его ножек. Синусный узел может выключится. Включится ли атривентрикулярный узел как водитель ритма? Синусные блокады встречаются редко. Больше в атриовентрикулярных узлах. Удлинение задержки(больше 0,21с) возбуждение доходит до желудочка, хоть и замедленно. Выпадение отдельных возбуждений, которые возникают в синусном узле (Например, из трёх доходит только два - это вторая степень блокады. Третья степень блокады, когда предсердия и желудочки работают несогласованно. Блокада ножек и пучка - это блокада желудочков. Чаще встречаются блокады ножек пучка Гисса и соответственно один желудочек запаздывает за другим).

Сократимость. Кардиомиоциты включают фибриллы, а структурной единицей саркомеры. Есть продольные трубочки и Т трубочки наружной мембраны, котоыре входят внутрь на уровне мембраны я. Они широкие. Сократительная функция кардиомиоцитов связана с белками миозином и актином. На тонких актиновых белках - система тропонин и тропомиозин. Это не дает головкам миозин сцепляется с головками миозина. Снятие блокировки — ионами кальция. По т трубочкам открываются кальцевые каналы. Повышение кальция в саркоплазме снимает тормозной эффект актина и миозина. Мостики миозина перемещают тонике нити к центру. Миокард подчиняется в сократительной функции 2м законам - все или ничего. Сила сокращения зависит от исходной длины кардиомиоцитов - Франк Старалинг. Если кардиомиоциты предварительно растянуты, то они отвечают большей силой сокращения. Растяжение зависит от наполнения кровью. Чем больше- тем сильней. Этот закон формулируется как «систола — есть функция диастолы». Это важный приспособительный механизм, который синхронизирует работу правого и левого желудочка.

Особенности системы кровообращения:

1)замкнутость сосудистого русла, в который включен насосный орган сердце;

2)эластичность сосудистой стенки (эластичность артерий больше эластичности вен, однако емкость вен превышает емкость артерий);

3)разветвленность кровеносных сосудов (отличие от других гидродинамических систем);

4)разнообразие диаметра сосудов (диаметр аорты равен 1,5 см, а капилляров 8-10 мкм);

5)в сосудистой системе циркулирует жидкость-кровь, вязкость которой в 5 раз выше вязкости воды.

Типы кровеносных сосудов:

1)магистральные сосуды эластического типа: аорта, крупные артерии, отходящие от нее; в стенке много эластических и мало мышечных элементов, вследствие этого данные сосуды обладают эластичностью и растяжимостью; задача данных сосудов состоит в преобразовании пульсирующего кровотока в плавный и непрерывный;

2)сосуды сопротивления или резистивные сосуды- сосуды мышечного типа, в стенке высокое содержание гладкомышечных элементов, сопротивление которых меняет просвет сосудов, а следовательно и сопротивление кровотоку;

3)обменные сосуды или «обменные герои» представлены капиллярами, которые обеспечивают протекание процесса обмена веществ, выполнение дыхательной функции между кровью и клетками; количество функционирующих капилляров зависит от функциональной и метаболической активности в тканях;

4)сосуды шунта или артериовенулярные анастомозы напрямую связывают артериоллы и венулы; если данные шунты открыты, то кровь сбрасывается из артериолл в венулы, минуя капилляры, если же закрыты, то кровь идет из артериолл в венулы через капилляры;

5)емкостные сосуды представлены венами, для которых характерна большая растяжимость, но малая эластичность, данные сосуды вмещают до 70 % всей крови, существенно влияют на величину венозного возврата крови к сердцу.

Движение крови подчиняется законам гидродинамики, а именно происходит из области большего давления в область меньшего.

Количество крови, протекающей через сосуд прямо пропорционально разнице давлений и обратно пропорционально сопротивлению:

Q=(p1—p2) /R= ∆p/R,

где Q-кровоток, p-давление, R-сопротивление;

Аналог закона Ома для участка электрической цепи:

где I-сила тока, E-напряжение, R-сопротивление.

Сопротивление связано с трением частиц крови о стенки сосудов, что обозначается как внешнее трение, также существует и трение между частицами- внутреннее трение или вязкость.

Закон Гагена Пуазеля:

где η- вязкость, l- длина сосуда, r- радиус сосуда.

Q=∆pπr 4 /8ηl.

Этими параметрами определяется количество протекающей крови через поперечное сечение сосудистого русла.

Для движения крови имеет значение не абсолютные величины давлений, а разница давлений:

р1=100 мм рт ст, р2=10 мм рт ст, Q =10 мл/с;

р1=500 мм рт ст, р2=410 мм РТ ст, Q=10 мл/с.

Физическая величина сопротивления кровотока выражается в [Дин*с/см 5 ]. Были введены относительные единицы сопротивления:

Если р= 90 мм рт ст, Q= 90 мл/с, то R= 1 - единица сопротивления.

Величина сопротивления в сосудистом русле зависит от расположения элементов сосудов.

Если рассматриваются величины сопротивлений, возникающих в последовательно соединенных сосудах, то общее сопротивление будет равно сумме сосудов в отдельных сосудах:

В сосудистой системе кровоснабжение осуществляется за счет ветвей, отходящих от аорты и идущих параллельно:

R=1/R1 + 1/R2+…+ 1/Rn,

то есть общее сопротивление равно сумме величин обратных сопротивлению в каждом элементе.

Физиологические процессы подчиняются общим физическим законам.

Сердечный выброс.

Сердечный выброс- это количество крови, выталкиваемое сердцем в единицу времени. Различают:

Систолический (за время 1 систолы);

Минутный объем крови (или МОК) — определяется двумя параметрами, а именно систолическим объемом и частотой сердечных сокращений.

Величина систолического объема в покое составляет 65-70 мл, и является одинаковой для правого и левого желудочков. В покое желудочки выталкивают 70 % конечного диастолического объема, и к концу систолы в желудочках остается 60-70 мл крови.

V сист ср.=70мл, ν ср=70 уд/мин,

V мин=V сист * ν= 4900 мл в мин

Непосредственно определить V мин трудно, для этого используется инвазивный метод.

Был предложен косвенный метод на основе газообмена.

Метод Фика (метод определения МОК).

МОК= О2 мл/мин / А - V(О2) мл/л крови.

  1. Потребление О2 за минуту составляет 300 мл;
  2. Содержание О2 в артериальной крови = 20 об %;
  3. Содержание О2 в венозной крови = 14 об %;
  4. Артерио-венозная разница по кислороду = 6 об % или 60 мл крови.

МОК= 300 мл/60мл/л = 5л.

Величина систолического объема может быть определена как V мин/ν. Систолический объем зависит от силы сокращений миокарда желудочков, от величины наполнения кровью желудочков в диастолу.

Закон Франка-Старлинга устанавливает. что систола - функция диастолы.

Величина минутного объема определяется изменением ν и систолическим объемом.

При физической нагрузке величина минутного объема может возрастать до 25-30 л, систолический объем возрастает до 150 мл, ν достигает 180-200 ударов в минуту.

Реакции физически тренированных людей касаются прежде всего изменения систолического объема, нетренированных - частоты, у детей лишь за счет частоты.

Регуляция деятельности сердца

Другое с раздела: ▼

Функция сердца, есть сила и частота его сокращений, изменяется в зависимости от состояния организма и условий, в которых организм находится. Обеспечиваются эти изменения регуляторными механизмами, которые можно разделить на миогенные (связанные с физиологическими свойствами собственно структур серйя), гуморальные (влияние различных физиологически активных веществ, производятся непосредственно в сердце и организме) и нервные (осуществляются с помощью интра-и экстракардиальные системы).

Миогенные механизмы. Закон Франка-Старлинга. Благодаря свойствам сократительных миофиламенты миокард может изменять силу сокращения зависимости от степени наполнения полостей сердца. При постоянной ЧСС сила сердечных сокращений увеличивается с ростом венозного притока крови. Это наблюдается, например, при росте конечно-диастолического объема с 130 до 180 мл.

Предполагают, что в основе механизма Франка-Старлинга лежит первоначальное расположение актиновых и миозинових филаментов в саркомири. Скольжение нитей друг относительно друга осуществляется при взаимном перекрытии благодаря создаваемых поперечным мостикам. Если эти нити растянуты, то количество возможных «шагов» возрастет, следовательно, увеличится и сила следующего сокращения (положительный инотропный эффект). Но дальнейшее растяжение может привести к тому, что актиновые И миозиновые нити уже не будут перекрываться и не смогут образовать мостики для сокращения. Поэтому

чрезмерное растяжение мышечных волокон приведет к уменьшению силы сокращения, т.е. отрицательный инотропный эффект. Это наблюдается при увеличении конечно-диастолического объема выше 180 мл.

Механизм Франка-Старлинга обеспечивает увеличение УО при повышении венозного притока крови в соответствующий отдел (правый или левый) сердца. Он способствует усилению сердечных сокращений при возрастании сопротивления выброса крови в сосуды. Последнее обстоятельство может быть следствием повышения диастолического давления в аорте (легочной артерии) или сужение этих сосудов (коарктации). В данном случае можно представить такую. последовательность развития изменений. Повышение давления в аорте приводит к резкому увеличению коронарного кровотока, при котором механически растягиваются кардиомиоциты и, согласно механизму Франка-Старлинга, в их усиленного сокращения, повышение УО крови. Это явление носит название эффекта Анрепа.

Механизм Франка-Старлинга и эффект Анрепа обеспечивает авторегуляции функции сердца при многих физиологических состояниях (например, при физической нагрузке). В таком случае МОК может быть увеличен на 13-15 л / мин.

Хроноинотропия. Зависимость силы сокращения сердца от частоты его деятельности (лестница Боудича) является фундаментальным свойством миокарда. Сердце человека и большинства животных, за исключением крыс в ответ на повышение ритма реагирует увеличением силы сокращений и, наоборот, с уменьшением ритма сила сокращений падает. Механизм этого феномена связан с накоплением или падением в миоплазми концентрации Са2 +, а также увеличением или уменьшением количества поперечных мостиков, что приводит положительные или

негативные эффекты сердца.

Гуморальные механизмы. Влияние инкреторной функции сердца.

В сердце, особенно в его предсердиях, образуются биологически активные соединения (дигиталисоподибни факторы, катехоламины, продукты арахидоновой кислоты) и гормоны, в частности, предсердный натрийуретический и ренин-ангиотензин соединения. Оба гормоны участвуют в регуляции сократительной активности миокарда, МОК. Последний из них имеет специфические рецепторы, при воздействии на которые развивается гипертрофия миокарда.

Влияние ионов на функцию сердца. Подавляющее большинство регуляторных влияний на функциональное состояние сердца связана с мембранными механизмами проводящей системы и кардиомиоцитов. Мембраны прежде всего отвечают за проникновение ионов. Состояние мембранных каналов, переносчиков, а также насосов, использующих энергию АТФ, влияет на концентрацию ионов в миоплазми. Существенная роль в трансмембранному обмене ионами принадлежит концентрационном градиента, который определяется прежде всего концентрацией их в крови, а следовательно, и в межклеточной жидкости. Увеличение внеклеточного концентрации ионов приводит к росту пассивного поступления их в кардиоциты, снижение — к «вымыванию». Вполне вероятно, что кардиогенный эффект ионов послужил одним из оснований для формирования в процессе эволюции сложных систем регуляции, что обеспечивает их гомеостаз в крови.

Влияние Са2 +. Если содержание Са2 + в крови снижается, то возбудимость и сократимость сердца уменьшается, а при увеличении, напротив, повышается. Механизм этого явления связан с уровнем Са2 + в клетках проводящей системы и рабочего миокарда, в зависимости от которого развиваются положительные или отрицательные эффекты деятельности сердца.

Влияние К +. При уменьшении концентрации К + (менее 4 ммоль / л) в крови возрастают пейсмекерного активность и ЧСС. При увеличении его концентрации эти показатели уменьшаются. Двукратное повышение содержания К + в крови может привести к остановке сердца. Этот эффект используется в клинической практике для остановки сердца во время проведения на ньрму хирургических операций. Механизм этих изменений связан с уменьшением соотношения между внешним и внутриклеточным к + повышением проницаемости мембран до К + снижением потенциала покоя.

Влияние Na +. Снижение содержания Na + в крови может привести к остановке сердца. В основе этого влияния лежит нарушение градиентного трансмембранного транспорта Na +, Са2 + и сочетания возбудимости с сократимостью. Незначительное повышение уровня Na + благодаря Na + -, Са2 +-обменнике приведет к увеличению сократимости миокарда.

Влияние гормонов. Ряд настоящих (адреналин, норадреналин, глюкагон, инсулин и др.). И тканевых (ангиотензин II, гистамин, серотонин и др.). Гормонов стимулируют функцию сердца. Механизм действия, например, норадреналина, серотонина и гистамина связан с соответствующими рецепторами: p-адренорецепторами, Нг-гистаминовых и серотониновых. В результате их взаимодействия увеличиваются концентрации аденилатциклазы, цАМФ, активизируются кальциевые каналы, накапливается внутриклеточный Са2 +, что и обусловливает итоге улучшения деятельности сердца.

Кроме этого, гормоны, которые активизируют аденилатциклазу, образование цАМФ, могут действовать на миокард косвенно, через усиление расщепления гликогена и окисления глюкозы. Интенсифицируя образования АТФ, такие гормоны, как адреналин и глюкагон, также становятся причиной положительной игиотропнои реакции.

Напротив, стимуляция образования цГМФ инактивирует Са2 +-каналы, что обуславливает негативное влияние на функции сердца. Таким образом действуют на кардиомиоциты медиатор парасимпатической нервной системы ацетилхолин, а также брадикинин. Но, кроме этого, ацетилхолин? К +-проницаемость и тем самым предопределяет гиперполяризацию. Последствием этих влияний является снижение скорости деполяризации, сокращение продолжительности ПД, снижение силы сокращения.

Влияние метаболитов. Для нормального функционирования сердца нужна энергия. Поэтому все изменения коронарного кровотока, трофической функции крови сказываются на работе миокарда.

При гипоксии, внутриклеточном ацидозе блокируются на мембране кардиомиоцитов медленные Са2 +-каналы, подавляя тем самым сократительную активность. В этом эффекте есть элементы самозащиты сердца, поскольку не потрачена на сокращение АТФ обеспечивает жизнеспособность кардиомиоцитов. И если гипоксия будет ликвидирована, то сохраненный кардиомиоцит начнет Знобь выполнять нагнетательную функцию.

Увеличение в сердце концентраций креатинфосфата, свободных жирных кислот, молочной кислоты как источника энергии сопровождается повышением деятельности миокарда. Раскладывая молочную кислоту, сердце не только получает дополнительную энергию, но и способствует поддержанию постоянной рН крови.

Автоматия - способность сердечной мышцы к ритмическому сокращению без всяких внешних воздействий под влиянием импульсов, возникающих в самом сердце. Благодаря автоматии автономное (извлеченное из организма) сердце способно некоторое время самостоятельно сокращаться. Импульсы в сердечной мышце возникают благодаря деятельности атипических мышечных волокон, заложенных в некоторых участках миокарда - внутри них спонтанно генерируются электрические импульсы определенной частоты, распространяющиеся затем по всему миокарду. Первый такой участок находится в области устьев полых вен и называется синусовым , или синоатриальным, узлом. Он производит импульсы с частотой 60-80 раз в минуту и является главным центром автоматии сердца. Второй участок находится в толще перегородки между предсердиями и желудочками и называется предсердно-желудочковым, или атриовентрикулярным , узлом. Третий участок - пучок Гиса - атипические волокна, лежащие в межжелудочковой перегородке. От пучка Гиса отходят тонкие волокна атипической ткани - волокна Пуркинье, разветвляющиеся в миокарде желудочков. Все участки атипической ткани способны самостоятельно генерировать импульсы; в синусовом узле их частота самая высокая, его называют водителем ритма первого порядка, другие центры автоматии подчиняются этому ритму. Совокупность всех центров автоматии составляют проводящую систему сердца, благодаря которой волна возбуждения, возникшая в синусном узле, последовательно распространяется по всему миокарду и обеспечивает последовательное сокращение отделов сердца.

Возбудимость сердечной мышцы проявляется в способности сердца приходить в состояние возбуждения под действием различных раздражителей (химических, механических, электрических и др.). Потенциал действия, возникающий в одной клетке, передается другим клеткам, что приводит к распространению возбуждения по всему сердцу.

Сократимость - способность полости сердца сокращаться, обусловленная свойством клеток миокарда отвечать на возбуждение сокращением. Это свойство сердечной мышцы позволяет сердцу выполнять механическую работу по перекачиванию крови по сосудам: при сокращении полости сердца давление крови в сердечных камерах возрастает, и кровь под давлением поступает в артерии. Работа сердечной мышцы подчиняется закону «все или ничего»: если на сердечную мышцу оказывать раздражающее действие различной силы, мышца каждый раз отвечает максимальным сокращением. Если сила раздражителя не достигает порогового значения, то сердечная мышца не отвечает сокращением.

В работе сердца как насоса выделяют три фазы, сокращение предсердий, сокращение желудочков и пауза, когда желудочки и предсердия одновременно расслаблены. Сокращение сердца называется систолой , расслабление - диастолой. Во время систолы предсердий кровь выталкивается в желудочки, так как обратный кровоток в вены невозможен из-за захлопывания клапанов, во время систолы желудочков кровь устремляется в большой и малый круги кровообращения (обратному току в предсердия препятствуют митральный и трехстворчатый клапаны, расположенные между предсердиями и желудочками), а за время диастолы камеры сердца находятся в расслабленном состоянии и вновь заполняются кровью. За одну минуту сердце взрослого здорового человека сокращается примерно 60-70 раз. Ритмичное чередование сокращения и расслабления каждого из отделов сердца обеспечивает неутомляемость сердечной мышцы.

Иннервация сердца очень сложна. Она осуществляется вегетативной нервной системой - блуждающим и симпатическими нервами, в составе которых имеются как чувствительные, так и двигательные волокна. В стенке самого сердца находятся нервные сплетения, состоящие из нервных узлов и нервных волокон. Двигательные нервы сердца осуществляют четыре основные функции: замедление, ускорение, ослабление и усиление деятельности сердца. Эти нервы относятся к вегетативной нервной системе. Таким образом, сердечная мышца, обладая способностью к самостоятельным сокращениям, подчиняется также «командам сверху» - регулирующему воздействию нервной системы, обеспечивающему оптимальную адаптацию сердечной деятельности потребностям организма в конкретной ситуации.

Сосудистая система. Кровеносные сосуды представляют собой систему полых эластичных трубок различного строения, диаметра и механических свойств, по которым протекает кровь. Сосуды подразделяются на артерии, вены и капилляры.

Артерии имеют толстые упругие стенки, состоящие из грех слоев. Наружный слой представляет собой соединительнотканную оболочку, средний слой состоит из гладкой мышечной ткани и содержит соединительнотканные эластические волокна, внутренний слой образован эндотелием, под которым расположена внутренняя эластическая мембрана. Эластические элементы артериальной стенки образуют единый каркас, работающий как пружина и обусловливающий эластичность артерий.

Разветвляясь, артерии переходят в артериолы , которые отличаются от артерий наличием только одного слоя мышечных клеток и могут регулировать скорость кровотока за счет сужения или расширения просвета. Артериола переходит в прекапилляр, в котором мышечные клетки разрознены и не составляют сплошного слоя. От него отходят многочисленные капилляры - самые мелкие кровеносные сосуды, которые соединяют артериолы с венулами (мелкими разветвлениями вен). Благодаря очень тонкой стенке капилляров в них происходит обмен различными веществами между кровью и клетками тканей. В зависимости от потребности в кислороде и других питательных веществах разные ткани имеют разное количество капилляров. Капилляры могут находиться в активном (открытом) и пассивном (закрытом) состоянии. При активизации обменных процессов или потребности в усиленной теплоотдаче объем крови, проходящей через орган, может увеличиваться за счет активизации дополнительного числа капилляров. В покое и при уменьшении теплоотдачи значительное количество капилляров переходит в пассивное состояние, уменьшая таким образом объем кровотока. Состояние капиллярной сети регулируется вегетативной нервной системой в зависимости от потребностей организма.

Сливаясь, капилляры переходят в посткапилляры , которые но строению аналогичны прекапилляру. Посткапилляры сливаются в венулы с просветом 40-50 мкм. Венулы объединяются в более крупные сосуды, несущие кровь к сердцу, - вены. Они, так же как и артерии, имеют стенки, состоящие из трех слоев, по содержат меньше эластических и мышечных волокон, поэтому менее упруги, их просвет поддерживается током крови. Вены имеют клапаны (полулунные складки внутренней оболочки), которые открываются по току крови, что способствует движению крови в одном направлении. Схематически строение кровеносных сосудов представлено на рис. 4.6.

Рис. 4.6.

Человек и все позвоночные животные имеют замкнутую кровеносную систему. Кровеносные сосуды сердечно-сосудистой системы образуют две основные подсистемы: большой и малый круги кровообращения (рис. 4.7).

Сосуды большого круга кровообращения соединяют сердце со всеми другими частями тела. Большой круг кровообращения начинается в левом желудочке, откуда выходит аорта, а заканчивается в правом предсердии, куда впадают полые вены. Как часть большого круга кровообращения выделяют третий (сердечный) круг, снабжающий кровью само сердце. Он состоит из двух венечных, или коронарных, артерий, отходящих от аорты, и впадает в правое предсердие через венечную пазуху.

Сосуды малого круга кровообращения переносят кровь от сердца к легким и обратно. Малый круг кровообращения начинается правым желудочком, из которого выходит легочный ствол, а заканчивается левым предсердием, в которое впадают легочные вены.

Рис. 4.7.

1 - сердце; 2 - малый (легочный) круг кровообращения; 3 - большой круг кровообращения

Кардиомиоциты изолированы друг от друга и контактируют в области вставочных дисков, где соприкасаются мембраны соседних кардиомиоциов.

Коннесксоны- в мембране соседних клеток образуются эти структуры за счет белков конексинов. Коннексон окружают 6 таких белков, внутри коннексона - канал, который позволяет проходит ионам, таким таким образом электрический ток распространяется от одной клетки к другой. “f область имеет сопротивление 1,4 ом на см2(низкое). Возбуждение охватывает кардиомиоциты одновременно. Они функционирую как функциональный сенсициы. Нексусы очень чувствительны к недостатку кислорода, к действию катехоламинов, к стрессовым ситуациям, к физической нагрузке. Это может вызывать нарушение проведения возбуждения в миокарде. В экспериментальных условиях нарушение плотных контактов моно получить при помещении кусочков миокарда в гипертонический раствор сахарозы. Для ритмической деятельности сердца важна проводящая система сердца - эта система состоит из комплекса мышечных клеток, образующих пучки и узлы и клетки проводящей системы отличаются от клеток рабочего миокарда - они бедны миофибриллами, богаты саркоплазмой и содержат высокое содержание гликогена. Эти особенности при световой микроскопии делают их более светлыми с малой поперечной исчерченностью и они были названы атипическими клетками.

В состав проводящей системы входят:

1. Синоатриальный узел(Кейт-Флека)(в парвом предсердии у места впадения верхней полой вены)

2. Атрии-вентрикулярный узел(Ашоф-Тавара)(лежит в правом предсердии на границе предсердие-желудочек - задняя стенка правого предсердия)

Эти два узла связаны внутрипредсердными трактами -

3. Предсердные тракты

Пердний с ветвью Бахмена к левому предсердию

Средний тракт(Венкебаха)

Задний тракт(Тореля)

4. Пучок Гиса(отходит от атриовентрикулярного узла. Проходит через фиброзную ткань и обеспечивает связь миокарда предсердия с миокардом желудочка. Проходит в межжелудочковую перегородку, где разделяется на правую и илевую ножку пучка Гиса)

5. Правая и левая ножки пучка Гиса(они идут вдоль межжелудочковой перегородки. Левая ножка имеет две ветви - переднюю и заднюю. Конечными разветвлениями будут являтся волокна Пуркинье)

6. Волокна Пуркинье

В проводящей системе сердца, которая образована видоизмененными типами мышечных клеток имеются три вида клеток - пейсмекерны(P), переходные, клетки Пуркинье.

1. P -клетки . Находятся в сино-артриальном узле, меньше в атриовентрикулярном ядре. Это самые мелкие клетки, в них мало т - фибрилл и митохондрий, т-сстема отстутствует, l. система развита слабо. Основной функцией этих клеток является генерация потенциала действия за счет врожденного свойства медленной диастолической деполяризации. В них происходит периодическое снижение мембранного потенциала, которое приводит их к самовозбуждению.

2. Переходные клетки осуществляют предачу возбуждения в области атривентрикуярного ядра. Они обнаруживаются между P клетками и клетками Пуркинье. Эти клетки вытянутой формы, у них отсутствует сарко-плазматический ретикулум. Эти клетки облают замедленной скоростью проведения.

3. Клетки Пуркинье широкие и короткие, в них больше миофибрилл, лучше развит саркоплазматический ретикулум, T система отсутствует.

Электрические свойства клеток миокарда. Клетки миокарда, как рабочего, так и проводящей системы обладают мембранным потенциалам покоя и снаружи мембрана кардиомиоцита заряжена «+», а внутри «-». Это обусловлено ионной ассиметрией - внутри клеток в 30 раз больше ионов калия, а снаружи в 20-25 раз больше ионов натрия. Это обеспечивается постоянной работой натриево-калиевым насосом. Измерение мембранного потенциала показывает, что клетки рабочего миокарда имеетпотенциал - 80-90 мВольт. В клетках проводящей системы - 50-70 мВольт. При возбуждении клеток рабочего миокарда возникает потенциал действия(5 фаз) - 0, 1, 2, 3, 4.

0. При возбуждении возникает процесс деполяризации кардиомиоцитов, что связано с открытием натриевых каналов и повышение проницаемости для ионов натрия, которые устремляются внутрь кардиомиоцитов. При снижении мембранного потенциала о 30-40 милиВольт происходить открытие медленных натриево-кальцевых каналов. Через них могут входить натрий и дополнительно кальций. Это обеспечивает процесс деполяризации и овершут(реверсия) 120 мВольт.

1. Начальная фаза реполяризации . Закрытие натриевых каналов и некоторое повышение проницаемости к ионам хлора.

2. Фаза Плато . Процесс деполяризации затормаживается. Связана с усилением выхода кальция внутрь. Он задерживает восстановление заряда на мембране. При возбуждении снижается калиевая проницаемость(в 5 раз). Калий не может выходить из кардиомиоцитов.

3. Когда кальцевые каналы закрываются происходит фаза быстрой реполяризации . За счет восстановления поляризации к ионам калия и мембранный потенциал возвращается к исходному уровню и наступает диастолический потенциал

4. Диастолический потенциал постоянно стабилен

В клетках проводящей системы есть отличительные особенности потенциала.

1. Сниженный мембранный потенциал в диастолический период(50-70мВ)

2. Четвертая фаза не является стабильной и отмечается постепенное снижение мембранного потенциала к пороговому критическому уровню деполяризации и в диастолу постепенно медленно продолжает снижаться достигая критического уровня деполяризации при котором произойдет самовозбуждение П-клеток. В P-клетках происходит усиление проникновения ионов натрия и снижение выхода ионов калия. Повышается проницаемость ионов кальция. Эти сдвиги в ионном составе приводят к тому, что мембранный потенциал в P-клетках снижается до порогового уровня и p-клетка самовозбуждается обеспечивая возникновение потенциала действия. Плохо выражена фаза Плато. Фаза ноль плавно переходи ТВ процесс реполяризации, который восстанавливает диастолический мембранный потенциал, а дальше цикл повторяется вновь и P-клетки переходят в состояние возбуждения. Наибольшой возбудимостью обладают клетки сино-атриального узла. Потенциал в нем особо низок и скорость диастолической деполяризации наиболее высок.. Это будет влиять на частоту возбуждения. P- клетки синусного узла генерируют частоту до 100 ударов в мин. Нервная система(симпатическая система) подавляют действие узла(70 ударов). Симпатическая система может повышать автоматию. Гуморальные факторы- адреналин, норадреналин. Физические факторы - механический фактор - растяжение, стимулируют автоматию, согревание, тоже увеличивает автоматию. Все это применяется в медицине. На этом основано мероприятие прямого и непрямого массажа сердца. Область атриовентрикулярного узла тоже обладает автоматией. Степень автоматии атриовентрикулярного узла выражена значительно меньше и как правило она в 2 раза меньше, чем в синусном узле - 35-40. В проводящей системе желудочков импульсы тоже могут возникать(20-30 в минуту). ПО ходу проводящей системы возникает постипенное снижение уровня автоматии, что получило название градиента автоматии. Синусный узел - центр автоматии первого порядка.

Станеус - ученый . Наложение лигатур на сердце лягушки(3х камерное). У правого предсердия имеется венозныц синус, где лежит аналог синусного узла человека. Станеус накладывал 1ую лигатуру между венозным синусом и предсердием. Когда лигатура затягивалась сердце прекращала свою работу. Вторая лигатура накладывалась Станеусом между предсердиями и желудочком. В этой зоне находится аналог атрии-вентрикулярного узла, но 2ая лигатура имеет задачу не отделения узла, а его механическое возбуждение. Ее накладывают постепенно, возбуждая атриовентрикулярный узел и при этом возникает сокраение сердца. Желудочки получают вновь сокращаться под действием атрии-вентрикулярного узла. С частотой в 2 раза меньше. Если наложить 3ю лигатуру , которая отделяет атривентрикулярный узел возникает остановка сердца. Все это дает нам возможность показать, что синусный узел - водитель ритма, атриовентрикулярный узел обладает меньшей автоматией. В проводящей системе существуе убывающий градиент автоматии.

Физиологические свойства сердечной мышцы.

Возбудимость, проводимость,сократимость

Под возбудимостью сердечной мышцы понимается ее свойство отвечать на действие раздражителей пороговой или над пороговой силы процессом возбуждения. Возбуждение миокарда можно получить на действие химических, механических, температурных раздражений. Эта способность отвечать на действие разных раздражителей используется при массаже сердца(механическое), введение адреналина, кардиостимуляторы. Особенностью реакции сердца на действие раздражителя, играет то что действует по принципу «Все или ничего». Сердце отвечает максимальным импульсом уже на пороговый раздражитель. Продолжительность сокращения миокарда в желудочкх составляет 0,3с. Это обусловлено длительным потенциалом действия, который тоже длится до 300мс. Возбудимость сердечной мышцы может падать до 0 - абсолютно рефрактерная фаза. Никакие раздражители не могут вызвать повторного возбуждения(0,25-0,27с). Сердечная мышца абсолютно невозбудима. В момент расслабления(диастолы)абсолютная рефрактерная переходит в относительную рефрактерную 0,03-0,05с. В этот момент можно получить повторное раздражение на над пороговые раздражители. Рефрактерный период сердечной мышцы длится и совпадает по времени столько, сколько длится сокращение. Вслед за относительной рефрактерностью имеется небольшой период повышенной возбудимости - возбудимость ставновится выше исходного уровня - супер нормальная возбудимость. В эту фазу сердце особо чувствительно к воздействию других раздражителей(смогут возникать др. раздражители или экстрасистолы- внеочередные систолы). Наличие длительного рефрактерного периода должно оградить сердце от повторных возбуждений. Сердце выполняет насосную функцию. Промежуток между нормальным и внеочередным сокращением укорачивается. Пауза может быть нормальной или удлиненной.Удлиненную паузу называют компенсаторной. Причина экстрасистолов - возникновение других очагов возбуждения - атриовентрикулярный узел, элементы желудочковой части проводящей системы, клетки рабочего миокарда, Это может быть связано с нарушением кровоснабжением, нарушением проведения в сердечной мышцей, но все дополнительные очаги - эктопические очаги возбуждения. В зависимости от локализации - разные экстрасистолы - синусные, предсредные, атриовентрикулярные. Экстрасистолы желудочка сопровождаются удлиненной компенсаторнйо фазой. 3 дополнительное раздражение - причина внеочередного сокращения. Вовремя экстрасистола сердце утрачивает возбудимость. К ним приходит очередной импульс из синусного узла. Пауза нужна для восстановления нормального ритма. Когда в сердце происходит сбой сердце пропускает одно нормальное сокращение и дальше возвращается к нормальному ритму.

Проводимость - способность проводить возбуждение. Скорость проведения возбуждения в разных отделах неодинакова. В миокарде предсердий - 1 м/c и время проведения возбуждения занимает 0,035 с

Скорость проведения возбуждения

Миокард 1 м/c 0,035

A-V узел 0,02 - 0-05 м в с. 0,04 с

Проведение система желудочков - 2-4,2 м в с. 0,32

В сумме от синусного узла до миокарда желудочка - 0,107 с

Миокард желудочка - 0,8-0,9 м в с

Нарушение проведения сердца приводит к развитию блокад - синусной, атривентрикулярной, пучка гиса и его ножек. Синусный узел может выключится.. Включится ли атривентрикулярный узел как водитель ритма? Синусные блокады встречаются редко. Больше в атриовентрикулярных узлах. Удлиение задержки(больше 0,21с) возбуждение доходит до желудочка, хоть и замедленно. Выпадение отдельных возбуждений, которые возникают в синусном узле НАПРИМЕР из 3 доходит только 2 - вторая степень блокады. 3я блокада - предсердия и желудочки работают несогласованно. Блокада ножек и пучка - блокада желудочков. Чаще встречаются блокады ножек пучка Гиса и соответственно желудочек запаздывает за другим.

Сократимость

Кардиомиоциты включают фибриллы, саркомеры. Есть продольные трубочки и Т трубочки наружной мембраны, котоыре входят внутрь на уровне мембраны я. Они широкие. Сократительная фугкция кардиомиоцитов связана с белками миозином и актином. На тонких актиновых белках - система тропонин и тропомиозин. Это не дает головкам миозин сцепляется с головками миозина. Снятие блокировки - ионами кальция. По т трубочкам открываются кальцевые каналы. Повышение кальция в саркоплазме снимает тормозной эффект актина и миозина. Мостики миозина перемещают тонике нити к центру. Миокард подчиняется в сократительной функции 2м законам - все или ничего. Сила сокращения зависит от исходной длины кардиомиоцитов - Франк и Старалинг. Если миоциты предварительно растянуты, то они отвечают большей силой сокращения. Растяжение зависит от наполнения кровью. Чем больше- тем сильней. Этот закон формулируют как - систола есть функция диастолы. Это важный приспособительный механизм. Это синхронизирует работу правого и левого желудочка.

Физиология кровообращения

Основные свойства сердечной мышцы

К основным свойствам сердечной мышцы относятся автоматия, возбудимость, проводимость, сократимость.

Способность к ритмическому сокращению без всяких видимых раздражений под влиянием импульсов, возникающих в самом органе, является характерной особенностью сердца. Это свойство называется автоматизмом.

Возникновение импульсов связано с функцией атипических мышечных клеток – пейсмекеров, заложенных в узлах сердца. Первый узел проводящей системы расположен в месте впадения полых вен в правое предсердие – синусно-предсердный узел. Он является главным центром автоматики сердца – пейсмекером первого порядка.

От узла возбуждение распространяется к рабочим клеткам миокарда предсердий и диффузно, и по специальным внутрисердечным проводящим пучкам. Оба потока достигают второго узла атриовентрикулярного . Он расположен в толще сердечной перегородки на границе предсердий и желудочков. Этот узел является пейсмекером второго порядка. Возбуждение через предсердно-желудочковый узел в нормальных условиях может проходить только в одном направлении.

При прохождении возбуждения через предсердно-желудочковый узел импульсы задерживаются на 0,02-0,04 с. Это явление получило название атриовентрикулярной задержки. Ее функциональное значение состоит в том, что за время задержки успевает завершиться систола желудочков, и их волокна будут находиться в фазе рефрактерности.

Третий уровень расположен в пучке Гиса и волокнах Пуркинье. Пучок Гиса берет начало от предсердно-желудочкового узла и образует две ножки, одна из которых идет к левому, другая – к правому желудочку. Эти ножки ветвятся на более тонкие проводящие пути, заканчивающиеся волокнами Пуркинье, которые непосредственно контактируют с рабочими клетками миокарда.

Центры автоматии, расположенные в проводящей системе желудочков, носят название пейсмекеров третьего порядка. Таким образом, возбуждение по ножкам пучка Гиса направляется к верхушке сердца и оттуда по разветвлениям ножек и волокнам Пуркинье возвращается к основанию сердца. В результате этого сокращение сердца в целом осуществляется в определенной последовательности: сначала сокращаются предсердия, затем верхушки желудочков и их основания.

в областях узлов находятся нервные клетки. Их скопления и многочисленные волокна образуют густую нервную сеть. Эти нервные клетки относятся к кардиальной части метасимпатической нервной системы.

Для обеспечения работы сердца необходимым условием является анатомическая целостность его проводящей системы. В том случае, если в пейсмекере первого порядка в силу каких-то причин не возникает возбуждение или блокируется его передача, роль водителя ритма берет на себя пейсмекер второго порядка. В случае же невозможности передачи возбуждения к желудочкам они начинают сокращаться в ритме пейсмекеров третьего порядка. При поперечной блокаде предсердия и желудочки сокращаются каждый в своем ритме.

Повреждение водителей ритма ведет к полной остановке сердца.

Клетки атипической мышечной ткани функционально неоднородны. истинные пейсмекеры обладают способностью к спонтанной генерации потенциала действия. Остальные клетки относятся к потенциальным водителям ритма. Они разряжаются в результате пришедшего к ним возбуждения. Потенциальные пейсмекеры отличаются медленной диастолической деполяризации и более низкой частотой разрядов.

В отличие от волокон сократительного миокарда мембрана этих клеток во время диастолы приобретает большую ионную проницаемость, что ведет к развитию медленной диастолитической деполяризации пейсмекерного потенциала. В этот момент возникает местное нераспространяющееся возбуждение. У потенциальных пейсмекеров эта фаза достигает порогового уровня позже, чем у истинных. С достижением диастолического порогового уровня происходит возникновение распространяющегося ПД.

Ионный механизм пейсмекерного потенциала состоит в том, что во время фазы реполяризации клеточная мембрана становится более проницаемой для внутриклеточного К + .В результате проникновения внутрь клетки Na + и Са + и уменьшения скорости выхода из клетки К + возникает медленная диастолическая деполяризация. Когда уровень потенциала уменьшится, наступает резкое увеличение проницаемости мембраны вначале для Na + , а позже для Са + . Этот ионный ток приводит к возникновению пика ПД. Общая амплитуда ПД составляет около 100 мВ. С закрытием ионных каналов положительный заряд наружной поверхности мембраны восстанавливается. Появление ПД у пейсмекерной клетки сопровождается возникновением деполяризации у прилежащих к ней ведомых рабочих кардиомиоцитов, не обладающих автоматизмом, и распространением возбуждения.

Возбудимость сердечной мышцы. Под действием электрических, химических, термических и других раздражителей сердце способно приходить в состояние возбуждения. В основе процесса возбуждения лежит появление отрицательного электрического потенциала в первоначально возбужденном участке.

В покое мембрана кардиомиоцитов почти непроницаема для Na + и частично для К + . В результате процесса диффузии ионы К + , выходя из клетки, увеличивают положительный заряд на ее поверхности. Внутренняя сторона мембраны при этом становится отрицательной. При действии раздражителя любой природы, прихода возбуждения от соседней клетки или пейсмекера происходит поступление Na + в клетку. В этот момент на поверхности мембраны возникает отрицательный электрический заряд и развивается реверсия потенциала. Возникший потенциал деполяризует мембраны соседних клеток, у них возникают собственные ПД. Таким образом происходит распространение возбуждения в целом органе.

Этот процесс одинаков в рабочем миокарде и в водителях ритма.

Потенциал действия клетки рабочего миокарда длится 0,3 с, что примерно в 150 раз продолжительнее, чем в клетке скелетной мышцы. Во время развития ПД клетка невозбудима к последующим стимулам. Ее рефрактерный период почти в 100 раз больше рефлекторного периода скелетной мышцы. Эта особенность исключительно важна для функции сердца как органа, так как в ответ на частые повторные раздражения миокард может отвечать только одним потенциалом действия и одним сокращением. Все это создает условия к ритмическому сокращению органа.

Длительный абсолютный рефрактерный период сердечной мышцы предохраняет ее от быстрого повторного возбуждения до тех пор, пока не закончилась предыдущая волна деполяризации. Тем самым предотвращается нарушение нагнетательной функции сердца, ритмического чередования систолы и диастолы. Она исключает возможность тетанического сокращения сердца.

Сократимость сердечной мышцы. На допороговые раздражения сердце вообще не отвечает, но как только сила раздражения достигает порогового уровня, возникает максимальное сокращение миокарда. Дальнейшее нарастание силы раздражающего тока не изменяет величины сокращения. Таким образом, пороговое раздражение является одновременно и максимальным. Эта особенность сокращения сердечной мышцы получила название закона «все или ничего».

Подчинение сердечной мышцы закону «все или ничего» объясняется ее структурной организацией. В сердечной мышце отдельные мышечные волокна соединены друг с другом вставочными дисками с очень малым электрическим сопротивлением. Поэтому при достижении импульса пороговой величины возбуждение синхронно охватывает всю мышцу в целом.

Сократимость сердечной мышцы определяется особенностями строения ее волокон и соотношением между длиной и напряжением саркомера. Изменения сократительной силы миокарда, возникающие периодически, осуществляются посредством двух механизмов саморегуляции: гетерометрического и гомеометрического.

В основе гетерометрического механизма лежит изменение исходных размеров длины волокон миокарда, которое возникает при изменении величины притока венозной крови. Иными словами, чем сильнее сердце растянуто во время диастолы, тем оно сильнее сокращается во время систолы. Эта особенность получила название закона сердца Франка Старлинга.

Гомеометрический механизм основан на непосредственном действии биологически активных веществ на метаболизм мышечных волокон, выработку в них энергии. Адреналин и норадреналин увеличивают вход Са + в клетку в момент развития потенциала действия, вызывая тем самым усиление сердечных сокращений.

Серию последовательных явлений в клетке миокарда, начинающуюся с потенциала действия мембраны и завершающуюся укорочением миофибрилл, называют сопряжением возбуждения и сокращения (электромеханическое сопряжение). Сокращение сердечной мышцы происходит также как и скелетной.

К структурам, отвечающим за сопряжение возбуждения и сокращения миокарда, относятся система поперечных трубочек, особенно сильно развитая в желудочках, а также система продольных трубочек, являющаяся внутриклеточным резервуаром Са + .

Цикл работы сердца. Несмотря на большую сложность процессов, лежащих в основе сердечной деятельности, сердце построено по принципу насоса ритмического действия. Как и всякий насос для перекачивания жидкости, оно снабжено двумя видами клапанов, расположенных на входе и выходе желудочков.

При расслабленном состоянии конуса во время диастолы кровь свободно протекает через щель, образованную выростами. В момент систолы конуса и уменьшения диаметра трубки выросты плотно смыкаются и отделяют полость желудочка от аорты.

Предсердия и желудочки разделяют створчатые клапаны (в левой половине – двустворчатый, или митральный, в правой – трехстворчатый). Во время систолы желудочков эти клапаны препятствуют обратному забросу крови в предсердия. клапаны аорты и легочной артерии образуют обращенные в полость сосуда карманоподобные углубления, окружающие в виде полумесяцев устье сосудов, из-за чего получили название полулунных клапанов. Во время систолы желудочков клапаны открыты и прижаты к внутренним стенкам сосудов. В момент наступления диастолы устремляющаяся обратно из аорты и легочной артерии кровь захлопывает клапаны. Закрытие клапанов не требует специальной энергии сокращения, этот акт возникает в результате изменения давления в полостях сердца.

Сокращение сердечной мышцы называется систолой, ее расслабление – диастолой. При каждой систоле желудочков происходит выталкивание крови из левого желудочка в аорту, из правого желудочка – в легочную артерию, во время диастолы они заполняются кровью, поступающей из предсердий. В предсердия кровь попадает из вен. В обычных условиях систола и диастола четко согласованы во времени. Период, включающий одно сокращение и последующее расслабление сердца, составляет сердечный цикл. Его общая продолжительность у человека равна примерно 0,8 с. Сердечный цикл имеет три фазы: систолы предсердий, систолы желудочков, общая пауза.

Началом каждого цикла считается систола предсердий, длящаяся 0,1 с. Во время систолы повышается давление в полостях предсердий, что ведет к выталкиванию крови в желудочки. Желудочки в этот момент расслаблены, створки атриовентрикулярных клапанов свисают и кровь свободно поступает из предсердий в желудочки.

По окончании систолы предсердий начинается систола желудочков, длительность которой 0,3 с. В момент систолы желудочков предсердия оказываются уже расслабленными. Систола желудочков начинается с асинхронного сокращения их волокон, возникающего в результате распространения возбуждения по миокарду.

Вследствие повышения внутрижелудочкового давления атриовентрику-лярные клапаны быстро захлопываются. В этот момент полулунные клапаны еще тоже закрыты, поэтому полость желудочка оказывается замкнутой и объем крови в полости остается постоянным. В результате возбуждения увеличивается напряжение мышечных волокон без изменения их длины (изометрическое напряжение), что ведет к еще большему возрастанию давления крови. Стенка левого желудочка растягивается и ударяет о внутреннюю поверхность грудной клетки. Таким образом возникает сердечный толчок.

Когда давление крови в желудочках превзойдет давление в аорте и легочной артерии, полулунные клапаны откроются, их лепестки прижмутся к внутренним стенкам и наступит период изгнания, длящийся примерно 0,25 с. С падением давления полулунные клапаны захлопываются, препятствуя тем самым обратному току крови из аорты и легочной артерии, миокард желудочков начинает расслабляться. Когда давление в желудочках окажется меньше, чем в предсердиях, раскрываются атриовентрикулярные клапаны, происходит наполнение желудочков кровью, которая будет выброшена в следующем цикле, и наступает диастола всего сердца. Она продолжается до следующей систолы предсердий. Эта фаза, или общая пауза, имеет большое значение, так как в этот период происходит изъятие Са + из миофибрилл канальцами саркоплазматического ретикулума.