Регулировка натяжения спиц велосипедного колеса. Восьмерка на колесе велосипеда – устраняем самостоятельно. Окончание балансировки, вывод

В качестве генератора для ветряка было решено переделать асинхронный двигатель. Такая переделка очень проста и доступна, поэтому в самодельных конструкциях ветрогенераторов часто можно видеть генераторы сделанные из асинхронных двигателей.

Переделка заключается в проточке ротора под магниты, далее магниты обычно по шаблону приклеивают к ротору и заливают эпоксидной смолой чтобы не отлетели. Так-же обычно перематывают статор более толстым проводом чтобы уменьшить слишком большое напряжение и поднять силу тока. Но этот двигатель не хотелось перематывать и было решено оставить все как есть, только переделать ротор на магниты. В качестве донора был найден трехфазный асинхронный двигатель мощностью 1,32Кв. Ниже фото данного электродвигателя.

асинхронный двигатель переделка в генератор Ротор электродвигателя был проточен на токарном станке на толщину магнитов. В этом роторе не применяется металлическая гильза, которую обычно вытачивают и надевают на ротор под магниты. Гильза нужна для усиления магнитной индукции, через нее магниты замыкают свои поля питая из под низа друг друга и магнитное поле не рассеивается, а идет все в статор. В этой конструкции применены достаточно сильные магниты размером 7,6*6мм в количестве 160 шт., которые и без гильзы обеспечат хорошую ЭДС.



Сначала, перед наклейкой магнитов ротор был размечен на четыре полюса, и со скосом были расположены магниты. Двигатель был четырех-полюсной и так как статор не перематывался на роторе тоже должно быть четыре магнитных полюса. Каждый магнитный полюс чередуется, один полюс условно "север", второй полюс "юг". Магнитные полюса сделаны с промежутками, так в полюсах магниты сгруппированы плотнее. Магниты после размещения на роторе были замотаны скотчем для фиксации и залиты эпоксидной смолой.

После сборки ощущалось залипание ротора, при вращение вала чувствовались залипания. Было решено переделать ротор. Магниты были сбиты вместе с эпоксидной смолой и снова размещены, но теперь они более менее равномерно установлены по всему ротору, ниже фото ротора с магнитами перед заливкой эпоксидной смолой. После заливки залипание несколько снизилось и было замечено что немного упало напряжение при вращении генератора на одних и тех же оборотах и немного подрос ток.


После сборки готовый генератор было решено покрутить дрелью и что нибудь к ниму подключить в качестве нагрузки. Подключалась лампочка на 220 вольт 60 ватт, при 800-1000 об/м она горела в полный накал. Так-же для проверки на что способен генератор была подключена лампа мощностью 1 Кв, она горела в полнакала и сильнее дрель не осилила крутить генератор.


В холостую на максимальных оборотах дрели 2800 об/м напряжение генератора было более 400 вольт. При оборотах примерно 800 об/м напряжение 160 вольт. Так-же попробовали подключить кипятильник на 500 ватт, после минуты кручения вода в стакане стала горячей. Вот такие испытания прошел генератор, который был сделан из асинхронного двигателя.


После для генератора была сварена стойка с поворотной осью для крепления генератора и хвоста. Конструкция сделана по схеме с уводом ветроголовки от ветра методом складывания хвоста, поэтому генератор смещен от центра оси, а штырек позади, это шкворень, на который одевается хвост.


Здесь фото готового ветрогенератора. Ветрогенератор был установлен на девятиметровую мачту. Генератор при силе ветра выдавал напряжение холостого хода до 80 вольт. К нему пробовали подсоединять тенн на два киловатта, через некоторое время тенн стал теплым, значит ветрогенератор все-таки имеет какую-то мощность.


Потом был собран контроллер для ветрогенератора и через него подключен аккумулятор на зарядку. Зарядка была достаточно хорошим током, аккумулятор быстро зашумел, как будто его заряжают от зарядного устройства.

Данные на шиндике электродвигателя говорили 220/380 вольт 6,2/3,6 А.значит сопротивление генератора 35,4Ом треугольник/105,5 Ом звезда. Если он заряжал 12-ти вольтовый аккумулятор по схеме включения фаз генератора в треугольник, что скорее всего, то 80-12/35,4=1,9А. Получается при ветре 8-9 м/с ток зарядки был примерно 1,9 А, а это всего 23 ватт/ч, да немного, но может я где-то ошибся.

Такие большие потери из-за высокого сопротивления генератора, поэтому статор обычно перематывают более толстым проводом чтобы уменьшить сопротивление генератора, которое влияет на силу тока, и чем выше сопротивление обмотки генератора, тем меньше сила тока и выше напряжение.

Энергетический кризис часто сопровождается перебоями в энергоснабжении, особенно, если проблема касается сельской местности. Иметь резервный генератор не всегда возможно по ряду причин, поэтому можно воспользоваться «дармовым» источником энергии ветра. Для этого необходим ветрогенератор, который проще всего соорудить из обычного асинхронного двигателя.

Принцип действия такого генератора весьма прост: энергия ветра будет передаваться на ротор, который начёт вращаться в том же направлении, что и создаваемое при этом магнитное поле. Поскольку скольжение ротора при этом становится отрицательным, то на валу ротора возникает тормозной момент, а образующаяся электроэнергия будет передана потребителю. Таким образом, намагниченность ротора становится причиной возбуждения эдс в выходной цепи машины.

Преимущества асинхронного генератора:

  1. Конструктивно такой генератор проще, чем синхронный, и к тому же некритичен к внешним неблагоприятным воздействиям: например, к попаданию на него пыли и грязи (что вполне вероятно в условиях сильного ветра).
  2. Напряжение на выходе имеет меньшую степень нелинейных искажений, а потому к такому генератору можно подключать различную нагрузку – от сварочного преобразователя до компьютера.
  3. Коэффициент неравномерности вращения для асинхронных генераторов не опускается ниже 0,98 , что исключает его перегрев в условиях длительной работы.
  4. Вследствие отсутствия вращающихся обмоток долговечность асинхронного генератора ожидается достаточно высокой.

Таким образом изготовить не только принципиально возможно, но и практически целесообразно.

Рассмотрим основные этапы переделки

Вначале подбирается необходимый электродвигатель: он должен быть низкооборотистым (не более 1300 мин -1), имеющим 3 или 4 пары полюсов.

Проточка ротора двигателя под установку магнитов

Заключается в уменьшении диаметра ротора под высоту устанавливаемых магнитов. Здесь возможны варианты: если имеющиеся в распоряжении магниты – недостаточно сильные, то дополнительно необходимо выточить и одеть на ротор переходную металлическую втулку, с помощью которой значение наводимой магнитной индукции окажется достаточным для того, чтобы не допустить рассеивания магнитного поля. В ином случае никаких других работ по переделке ротора производить не нужно. Проточенный под установку магнитов (при наличии втулки) ротор имеет вид, представленный на рис.1.

Расчёт необходимого количества магнитов и их монтаж

Для этого сначала определяется длина окружности ротора после его переточки, которая будет соответствовать высоте втулки:

L=πD , где D – диаметр ротора.

Требуемая толщина магнитов t должна быть в пределах t=(0.1...0.15)D. Далее рассчитывается количество секций n, в каждой из которых магниты будут устанавливаться с одинаковым полюсом:

n=L/p, где p – количество полюсов электродвигателя.

Для окончательного решения вопроса определяют количество магнитов, которое сможет уместиться в одном полюсе, чтобы потом равномерно и с наибольшей плотностью распределить их по всей высоте втулки. Смещение магнитов при их наклейке принимается равным толщине одного магнита. Для приклеивания лучше всего применять эпоксидный клей. Внешний вид втулки с магнитами в сборе, одетой на ротор, представлен на рис.2.

Проверка работоспособности генератора

После сборки ветрогенератора из асинхронного двигателя необходимо проверить на фактически развиваемую выходную мощность, поскольку после наклейки магнитов, а также вследствие увеличения массы ротора, параметры электромашины изменяются. С этой целью ротор генератора необходимо привести во вращение со скоростью, соответствующей номинальной скорости вращения переделанного электродвигателя.

Для этого можно использовать обычную электродрель, а на выходе подключить любую доступную нагрузку, например, электролампочку. Изменяя мощность подключаемых ламп, а также число оборотов дрели, можно установить практическую работоспособность ветрогенератора и зависимость вырабатываемого напряжения от количества оборотов ротора. Контрольная установка в различных вариантах её подключения представлена на рис.3.

Изготовление исполнительной части ветрогенератора

Она должна состоять из лопастей винтов, поворотной оси и стойки, на которой закрепляется вся конструкция. Лопасти (см. рис.4) можно изготавливать из полихлорвиниловой трубы диаметром 150…200 мм. Далее под готовый ветрогенератор из асинхронного двигателя изготавливается стойка, которая должна иметь поворотную ось, собранную на подшипниках качения. Готовая конструкция исполнительной части ветрогенератора с винтом диаметром 1,7 м представлена на рис. 5.

Апробация ветрогенератора из асинхронного двигателя

Заключается в экспериментальном определении мощности готовой установки. Данный параметр будет определяться множеством факторов, причём большинство из них весьма неопределённо: в расчёт следует принимать и высоту мачты, и диапазон изменения скорости ветра и влажность воздуха. Тем не менее принцип остаётся тем же: подключается нагрузка заранее известной мощности, после чего по падению числа оборотов можно сделать вывод о мощности ветрогенератора.

Повысить мощность машины можно, дополнительно осуществив перемотку статора двигателя проводом с большим сечением. Это уменьшает собственное сопротивление генератора, и, соответственно, увеличивает напряжение на выходе. Общий вид переделанного таким образом статора двигателя представлен на рис. 6. Таким путём удаётся увеличить выходную мощность ветрогенератора в несколько раз.

А вот и видео по переделке и показательным запуском:

В качестве генератора для ветряка было решено переделать асинхронный двигатель. Такая переделка очень проста и доступна, поэтому в самодельных конструкциях ветрогенераторов часто можно видеть генераторы сделанные из асинхронных двигателей.

Переделка заключается в проточке ротора под магниты, далее магниты обычно по шаблону приклеивают к ротору и заливают эпоксидной смолой чтобы не отлетели. Так-же обычно перематывают статор более толстым проводом чтобы уменьшить слишком большое напряжение и поднять силу тока. Но этот двигатель не хотелось перематывать и было решено оставить все как есть, только переделать ротор на магниты. В качестве донора был найден трехфазный асинхронный двигатель мощностью 1,32Кв. Ниже фото данного электродвигателя.

> Ротор электродвигателя был проточен на токарном станке на толщину магнитов. В этом роторе не применяется металлическая гильза, которую обычно вытачивают и надевают на ротор под магниты. Гильза нужна для усиления магнитной индукции, через нее магниты замыкают свои поля питая из под низа друг друга и магнитное поле не рассеивается, а идет все в статор. В этой конструкции применены достаточно сильные магниты размером 7,6*6мм в количестве 160 шт., которые и без гильзы обеспечат хорошую ЭДС.

>

> Сначала, перед наклейкой магнитов ротор был размечен на четыре полюса, и со скосом были расположены магниты. Двигатель был четырех-полюсной и так как статор не перематывался на роторе тоже должно быть четыре магнитных полюса. Каждый магнитный полюс чередуется, один полюс условно "север", второй полюс "юг". Магнитные полюса сделаны с промежутками, так в полюсах магниты сгруппированы плотнее. Магниты после размещения на роторе были замотаны скотчем для фиксации и залиты эпоксидной смолой.

После сборки ощущалось залипание ротора, при вращение вала чувствовались залипания. Было решено переделать ротор. Магниты были сбиты вместе с эпоксидной смолой и снова размещены, но теперь они более менее равномерно установлены по всему ротору, ниже фото ротора с магнитами перед заливкой эпоксидной смолой. После заливки залипание несколько снизилось и было замечено что немного упало напряжение при вращении генератора на одних и тех же оборотах и немного подрос ток.

>

После сборки готовый генератор было решено покрутить дрелью и что нибудь к ниму подключить в качестве нагрузки. Подключалась лампочка на 220 вольт 60 ватт, при 800-1000 об/м она горела в полный накал. Так-же для проверки на что способен генератор была подключена лампа мощностью 1 Кв, она горела в полнакала и сильнее дрель не осилила крутить генератор.

>

В холостую на максимальных оборотах дрели 2800 об/м напряжение генератора было более 400 вольт. При оборотах примерно 800 об/м напряжение 160 вольт. Так-же попробовали подключить кипятильник на 500 ватт, после минуты кручения вода в стакане стала горячей. Вот такие испытания прошел генератор, который был сделан из асинхронного двигателя.

>

После для генератора была сварена стойка с поворотной осью для крепления генератора и хвоста. Конструкция сделана по схеме с уводом ветроголовки от ветра методом складывания хвоста, поэтому генератор смещен от центра оси, а штырек позади, это шкворень, на который одевается хвост.

>

Здесь фото готового ветрогенератора. Ветрогенератор был установлен на девятиметровую мачту. Генератор при силе ветра выдавал напряжение холостого хода до 80 вольт. К нему пробовали подсоединять тенн на два киловатта, через некоторое время тенн стал теплым, значит ветрогенератор все-таки имеет какую-то мощность.

>

Потом был собран контроллер для ветрогенератора и через него подключен аккумулятор на зарядку. Зарядка была достаточно хорошим током, аккумулятор быстро зашумел, как будто его заряжают от зарядного устройства.

Пока к сожалению никаких подробных данных по мощности ветрогенератора нет, так-как пользователь разместивший свой ветрогенератор вот здесь

Для обеспечения бесперебойного электроснабжения дома используют генераторы переменного тока, приводимые во вращение дизельными или карбюраторными двигателями внутреннего сгорания. Но из курса электротехники известно, что любой электродвигатель обратим: он также способен и вырабатывать электроэнергию. Можно ли сделать генератор из асинхронного двигателя своими руками, если он и двигатель внутреннего сгорания уже имеются? Ведь тогда не потребуется покупка дорогой электростанции, а можно будет обойтись подручными средствами.

Конструкция асинхронного электродвигателя

Асинхронный электродвигатель включает в себя две основные детали: неподвижный статор и вращающегося внутри него ротор. Ротор вращается на подшипниках, закрепленных в съемных торцевых частях. Ротор и статор содержат электрические обмотки, витки которых уложены в пазы.

Статорная обмотка подключается к сети переменного тока, однофазной или трехфазной. Металлическая часть статора, куда она уложена, называется магнитопроводом. Он выполнен из отдельных тонких пластин с покрытием, изолирующих их друг от друга. Этим исключается появление вихревых токов, делающих работу электродвигателя невозможной из-за возникновения чрезмерных потерь на нагрев магнитопровода.

Выводы от обмоток всех трех фаз располагаются в специальном боксе на корпусе электродвигателя. Его называют барно, в нем выводы обмоток соединяются между собой. В зависимости от питающего напряжения и технических данных мотора выводы объединяются либо в звезду, либо в треугольник.

Обмотка ротора любого асинхронного электродвигателя похожа на «беличью клетку», так ее и называют. Она выполнена в виде ряда токопроводящих алюминиевых стержней, рассредоточенных по наружной поверхности ротора. Концы стержней замкнуты, поэтому такой ротор называют короткозамкнутым.

Обмотка, как и статорная, расположена внутри магнитопровода, также набранного из изолированных металлических пластин.

Принцип действия асинхронного электродвигателя

При подключении питающего напряжения к статору по виткам обмотки протекает ток. Он создает внутри магнитное поле. Поскольку ток переменный, то поле изменяется в соответствии с формой питающего напряжения. Расположение обмоток в пространстве выполнено так, что поле внутри него оказывается вращающимся.

В обмотке ротора вращающееся поле наводит ЭДС. А раз витки обмотки накоротко замкнуты, то в них появляется ток. Он взаимодействует с полем статора, это приводит к появлению вращения вала электродвигателя.

Электродвигатель называют асинхронным, потому что поле статора и ротор вертятся с разными скоростями. Эта разница скоростей называется скольжением (S).

n – частота магнитного поля;

nr – частота вращения ротора.

Чтобы регулировать скорость вала в широких пределах, асинхронные электродвигатели выполняют с фазным ротором. На таком роторе намотаны смещенные в пространстве обмотки, такие же, как и на статоре. Концы от них выведены на кольца, с помощью щеточного аппарата к ним подключаются резисторы. Чем большее сопротивление подключить к фазному ротору, тем меньше будет скорость его вращения.

Асинхронный генератор

А что будет, если ротор асинхронного электродвигателя вращать? Сможет ли он вырабатывать электроэнергию, и как сделать генератор из асинхронного двигателя?

Оказывается, это возможно. Для того, чтобы на обмотке статора появилось напряжение, изначально необходимо создать вращающееся магнитное поле. Оно появляется за счет остаточной намагниченности ротора электрической машины. В дальнейшем, при появлении тока нагрузки, сила магнитного поля ротора достигает требуемой величины и стабилизируется.

Для облегчения процесса появления напряжения на выходе используется батарея конденсаторов, подключаемая к статору асинхронного генератора на момент запуска (конденсаторное возбуждение).

Но остается неизменным параметр, свойственный асинхронному электродвигателю: величина скольжения. Из-за него частота выходного напряжения асинхронного генератора будет меньшей, чем частота вращения вала.

Кстати, вал асинхронного генератора необходимо вращать с такой скоростью, чтобы была достигнута номинальная частота вращения поля статора электродвигателя. Для этого нужно узнать скорость вращения вала из таблички, расположенной на корпусе. Округлив ее значение до ближайшего целого числа, получают скорость вращения для ротора переделываемого в генератор электродвигателя.

Например, для электродвигателя, табличка которого изображена на фото, скорость вращения вала равна 950 оборотов в минуту. Значит, скорость вращения вала должна быть 1000 оборотов в минуту.

Чем асинхронный генератор хуже синхронного?

Насколько хорош будет самодельный генератор из асинхронного двигателя? Чем он будет отличаться от синхронного генератора?

Для ответа на эти вопросы кратко напомним принцип работы синхронного генератора. Через контактные кольца к обмотке ротора подводится постоянный ток, величина которого регулируется. Вращающееся поле ротора создает в обмотке статора ЭДС. Для получения требуемой величины напряжения генерации автоматическая система регулировки возбуждения изменит ток в роторе. Поскольку за напряжением на выходе генератора следит автоматика, то в результате непрерывного процесса регулирования напряжение всегда остается неизменным и не зависит от величины тока нагрузки.

Для запуска и работы синхронных генераторов используются независимые источники питания (аккумуляторные батареи). Поэтому начало его работы не зависит ни от появления тока нагрузки на выходе, ни от достижения требуемой скорости вращения. От скорости вращения зависит только частота выходного напряжения.

Но даже при получении тока возбуждения от генераторного напряжения все сказанное выше остается справедливым.

Синхронный генератор имеет еще одну особенность: он способен генерировать не только активную, но и реактивную мощность. Это очень важно при питании потребляющих ее электродвигателей, трансформаторов и прочих агрегатов. Недостаток реактивной мощности в сети приводит к росту потерь на нагрев проводников, обмоток электрических машин, снижении величины напряжения у потребителей относительно генерируемой величины.

Для возбуждения же асинхронного генератора используется остаточная намагниченность его ротора, что само по себе является величиной случайной. Регулирование параметров, влияющих на величину его выходного напряжения, в процессе работы не представляется возможным.

К тому же асинхронный генератор не вырабатывает, а потребляет реактивную мощность. Она необходима ему для создания тока возбуждения в роторе. Вспомним про конденсаторное возбуждение: за счет подключения батареи конденсаторов при запуске создается реактивная мощность, требуемая генератору для начала работы.

В результате напряжение на выходе асинхронного генератора не стабильно и изменяется в зависимости от характера нагрузки. При подключении к нему большого числа потребителей реактивной мощности обмотка статора может перегреваться, что скажется на сроке службы ее изоляции.

Поэтому применение асинхронного генератора ограничено. Он может работать в условиях, близким к «парниковым»: никаких перегрузок, пусковых токов нагрузки, мощных потребителей реактива. И при этом электроприемники, подключенные к нему, не должны быть критичными к изменению величины и частоты напряжения питания.

Идеальным местом для применения асинхронного генератора являются системы альтернативной энергетики, работающие от энергии воды или ветра. В этих устройствах генератор не снабжает потребителя напрямую, а заряжает аккумуляторную батарею. От нее уже, через преобразователь постоянного тока в переменный, питается нагрузка.

Поэтому, если нужно собрать ветряк или небольшую гидроэлектростанцию, лучшим выходом из положения является именно асинхронный генератор. Здесь работает его главное и единственное достоинство – простота конструкции. Отсутствие колец на роторе и щеточного аппарата приводит к тому, что в процессе эксплуатации его не нужно постоянно обслуживать: чистить кольца, менять щетки, удалять графитовую пыль от них. Ведь, чтобы сделать ветрогенератор из асинхронного двигателя своими руками, вал генератора напрямую нужно соединить с лопастями ветряка. Значит – конструкция будет находиться на большой высоте. Снимать ее оттуда хлопотно.

Генератор на магнитах

А почему магнитное поле нужно обязательно создавать с помощью электрического тока? Ведь есть же мощные его источники – неодимовые магниты.

Для переделки асинхронного двигателя в генератор потребуются цилиндрические неодимовые магниты, которые будут установлены на место штатных проводников обмотки ротора. Сначала нужно подсчитать необходимое количество магнитов. Для этого извлекают ротор из переделываемого в генератор двигателя. На нем четко видны места, в которых уложена обмотка «беличьего колеса». Размеры (диаметр) магнитов выбирается таким, чтобы при установке строго по центру проводников короткозамкнутой обмотки они не соприкасались с магнитами следующего ряда. Между рядами должен остаться зазор не менее, чем диаметр применяемого магнита.

Определившись с диаметром, вычисляют, сколько магнитов поместится по длине проводника обмотки от одного края ротора до другого. Между ними при этом оставляют зазор не менее одного – двух миллиметров. Умножая количество магнитов в ряду, на число рядов (проводников обмотки ротора), получают требуемое их количество. Высоту магнитов не стоит выбирать очень большой.

Для установки магнитов на ротор асинхронного электродвигателя его потребуется доработать: снять на токарном станке слой металла на глубину, соответствующую высоте магнита. При этом ротор обязательно нужно тщательно отцентровать в станке, чтобы не сбить его балансировку. Иначе у него появится смещение центра масс, которое приведет к биению в работе.

Затем приступают к установке магнитов на поверхность ротора. Для фиксации используют клей. У любого магнита есть два полюса, условно называемые северным и южным. В пределах одного ряда полюса, расположенные в сторону от ротора, должны быть одинаковыми. Чтобы не ошибиться в установке, магниты сначала сцепляют между собой в гирлянду. Они сцепятся строго определенным образом, так как притягиваются они друг к другу только разноименными полюсами. Теперь остается только отметить одноименные полюса маркером.

В каждом последующем ряду полюс, находящийся снаружи, изменяется. То есть, если вы выложили ряд магнитов с отмеченным маркером полюсом, расположенным наружу от ротора, то следующий выкладывается магнитами, развернутыми наоборот. И так далее.

После приклеивания магнитов их нужно зафиксировать эпоксидной смолой, Для этого вокруг получившийся конструкции из картона или плотной бумаги делают шаблон, в который зальется смола. Бумагу оборачивают вокруг ротора, обматывают скотчем или изолентой. Одну из торцевых частей замазывают пластилином или также заклеивают. Затем устанавливают ротор вертикально и заливают в полость между бумагой и металлом эпоксидную смолу. После ее отвердевания приспособления удаляют.

Теперь снова зажимаем ротор в токарный станок, центруем, и шлифуем поверхность, залитую эпоксидкой. Это необходимо не из эстетических соображений, а для минимизации влияния возможной разбалансировки, образовавшейся из-за дополнительных деталей, установленных на ротор.

Шлифовку производят сначала крупнозернистой наждачной бумагой. Ее крепят на деревянном бруске, который затем равномерно перемещают по вращающейся поверхности. Затем можно применить наждачную бумагу с более мелким зерном.

Теперь готовый ротор можно вставить обратно в статор и испытать получившуюся конструкцию. Она может быть с успехом использована теми, кто хочет сделать, например, ветрогенератор из асинхронного двигателя. Есть только один недостаток: стоимость неодимовых магнитов очень велика. Поэтому, прежде чем начать переделывать ротор и тратить деньги на запчасти, следует подсчитать, какой вариант экономически более выгоден: сделать генератор из асинхронного двигателя или приобрести готовый.

Генератор из асинхронного двигателя своими руками в домашних условиях


Как сделать генератор из асинхронного двигателя своими руками для использования совместно с двигателем внутреннего сгорания или в составе ветровой электростанции. Достоинства и недостатки асинхронных генераторов по сравнению с синхронными, конструкция их и принципы действия.

Ветрогенератор своими руками из асинхронного двигателя

Я сделал свой пропеллер своими руками из еловых досок размером 1″х4″. Я постарался найти три доски без сучков, имеющие хорошие вертикальные волокна и имеющие примерно одинаковую плотность (это определялось по весу).

Конечно, можно использовать и другие породы дерева, просто у меня нашлась под рукой только ель. Размер досок был подобран так, чтобы пропеллер был достаточно легким, чтобы быстро стартовать и не сильно нагружать опоры. На то, чтобы вырезать лопасти, ушло около 2 часов. Безусловно, если бы я потратил больше времени, пропеллер вышел бы лучше, размеры в основном определялись интуитивно (мой чертеж показан на Рисунке 1).

Однако если вы хотите сделать все по правилам, в сети множество информации по аэродинамике, вырезанию по дереву и даже по изготовлению пропеллеров.

Рисунок 1. Поперечный срез лопасти.

После проверки лопастей на одинаковый размер я соединял их болтами по двое и проверял, хорошо ли сбалансирована получающаяся конструкция. Когда все три лопасти стали одинаковыми, я покрасил их и присоединил к ступице, в качестве которой использовал старую 8-дюймовую шестерню. После этого я смог насадить всю эту конструкцию на ось и попробовать покрутить, определив степень сбалансированности и подпилив слишком тяжелые части (конечно, потом их пришлось снова покрасить). В сумме процесс построения и балансировки пропеллера занял около 4 часов.

Следует заметить, что три лопасти после балансировки оказались разной толщины, в некоторых местах они отличались на 1/8 дюйма. Чтобы этого избежать, рекомендуется выбирать дерево лучших пород и уделять первоначальному выпиливанию больше внимания. Для выпиливания я пользовался в основном электрорубанком. Стоит также обратить внимание на то, что лопасти не закручены, то есть их угол наклона относительно оси всегда постоянный. Для пропеллера такого небольшого размера это вполне нормально.

Магниты имеют прямоугольную форму и изогнуты так, чтобы подходить к якорям большинства двигателей мощностью от 0.5 л.с. и выше. Насечки имеют такую глубину, чтобы край вставленного в них магнита находился на одном уровне с поверхностью якоря. Магниты приклеиваются эпоксидным клеем. Располагаются они парами по два магнита с одинаковой полярностью.

Подключенный генератор выдает 12 В примерно на 160 об/мин. При другом способе подключения генератор мог достичь максимальной нагрузки при 80 об/мин, однако это могло значительно ограничить силу тока. Конечно, результирующий ток переменный, а для зарядки аккумулятора нам необходим постоянный, поэтому я использовал 40-амперный ТС.

Во время сборки мачту поддерживала небольшая сосновая тренога. Еще одна тренога большего размера была использована для подъема.

Башня поддерживалась четырьмя проволочными растяжками диаметром 1/8″ из авиационного кабеля с талрепами для регулировки.

Ходовая часть и хвост ветряка

Ветряк действительно было очень легко сделать. Я начал с кусков стали толщиной 3/8″, к которым можно было прикрутить генератор. Для этого я сварил трубу, которая подходила по размеру к трубе на конце мачты, - на ней ветряк будет вращаться. В этой машине нет токосъемников, я просто использовал достаточное количество кабеля, чтобы она могла сделать несколько оборотов прежде чем остановиться. Линия электропередачи генератора чуть длиннее, чем кабель, чтобы ветряк мог остановиться, не вырвав шнур питания. Хвост закреплен железным треугольником в 4 ярдах от центра вращения. Два 0.5″ стальных бруска служат для лучшего закрепления хвоста. Я слегка сдвинул хвост и генератор относительно оси, это было сделано исключительно интуитивно в надежде, что порывы ветра не закрутят его слишком быстро.

Мой самодельный ветрогенератор хорошо запускается только на высоких скоростях ветра. Эту проблему можно устранить, сделав пропеллер большего размера, шире лопасти или даже больше лопастей. Зато после запуска генератора, лопасти достаточно хорошо закрутились даже на очень низкой скорости. Ветер в нашей местности порывистый, направление часто меняется, так что мне сложно связать полученное электричество со скоростью ветра. Лучший результат, который мне удалось замерить – 25 А при высокой скорости ветра, хотя обычно на моих 12-вольтовых батареях можно получить 5-15 А при низкой скорости.

Возможно, имеет смысл построить регулятор с согласующим ТС или линейный усилитель потока, который лучше справится с потреблением на генератор и обеспечит значительно большую силу тока.

Проверка в действии

Через 8 недель безупречной работы мой самодельный ветряк сломался. По радио передали штормовое предупреждение.

Я убедился, что кабель по-прежнему целый, и постарался сделать так, чтобы он оставался целым и дальше. Через некоторое время я услышал странный звук. Ветряк все еще крутился и даже выдавал 20 А, но было очевидно, что что-то случилось. Оказалось, что одна из лопастей отвалилась.

Я нашел обломки лопасти, похоже, она изначально была надтреснутая. Учитывая, что остальные две лопасти остались целыми, конструкция сама по себе была хорошей. Этот факт подтвердился тем, что ветряк проработал с двумя лопастями довольно долгое время при очень сильном порывистом ветре.

Вместо того чтобы чинить этот пропеллер, я сделал новый пропеллер своими руками. Он был больше, для него использовалось более прочное дерево, кроме того, я слегка закрутил лопасти. Высота мачты осталась прежней. Новый самодельный пропеллер стартовал гораздо легче и работал гораздо тише.

Помимо прочего эта поломка доказала, что выбрал правильную конструкцию башни. Она легко опускается и поднимается при необходимости. Спуск старого пропеллера, изготовление нового и монтирование его на мачте заняло всего 4 часа. В результате при нормальной скорости ветра такой самодельный ветряк производит от 100 до 200 Вт.

Ветрогенератор своими руками (генератор на постоянных магнитах из асинхронного электродвигателя)


Ветрогенератор своими руками (генератор на постоянных магнитах из асинхронного электродвигателя) Пропеллер Пропеллер для этого ветряка будет трехлопастным.

Конструкция этого ветрогенератора, достаточно простая и надежная. Это первая попытка переделки асинхронного двигателя в генератор на постоянных магнитах. Как то разбираясь в подвале нашел движок старый, но совсем не пользованный. Решил на нем и потренироваться. Мощности большой с него не ждал, так как двигатель четырех полюсной. Но опыт и практика иногда важнее Киловатт.

Разобрал я его, все внутренности в приличном состоянии оказались, что порадовало.
Рассчитал какие магниты подходят (точнее какие доступнее из возможных), проточку ротора. Отдал ротор токарю, тот поколдовал над ним полчасика, и вот я обладатель заготовки.


Не торопясь рассчитал скос магнитного полюса. Если клеить магниты без скоса, то залипания будут сильные, и сдвинуть вал генератора ветер не сможет. Напечатал шаблон наклейки магнитов. Пробил отверстия. Наклеил на заготовку и начал клеить магниты.

Больших проблем не было. Все магниты наклеил за два вечера (по два часа с перерывами на пиво и прочие неотложные дела).


Утром обмотал ротор прозрачным скочем, начиная снизу, герметично, вверху немного оставил зазор. Залил не торопясь эпоксидку. Все получилось нормально. Запас при проточке ротора взял больше расчетного, и все равно оказалось мало. Ротор не захотел входить. Переклеивать магниты залитые смолой я не стал. Просто обточил аккуратно на наждаке на малых оборотах с водой (не рекомендую этого делать без крайней нужды, так как неодимовые магниты не терпят перегрева). Собрал генератор. Залипаний практически нет (двумя пальцами легко страгивается).
Генератор готов. Снимаем характеристики. Это первый замер, который я делал сразу после сборки. Гарантировать точность оборотов не могу, не было чем фиксировать точно.
Перед испытаниями


А эти замеры делал не так давно. Соединение -фазы выпрямлены и последовательно.


Теперь нужно было делать лопасти. Рассчитал их не я. Вот что вышло.
Диаметр турбины 1.7 метра, быстроходность Z 5.


Собрал головку, но проверить как? А руки чешутся. Взял генератор с установленными лопастями и полез на крышу не высокую. Ветра почти нет. Покрутился вместо флюгера, а ветерок возьми да дунь слегка. Кто нибудь держал генератор при вращающимся винте? И не надо. Отвернуться от ветра совсем не просто. В общем был похож на настоящего Карлсона (который живет на крыше ). Все кто наблюдал эту картину от души посмеялись, а мне было немного не по себе (и это мягко сказано).
В общем эта модель благополучно отработала несколько месяцев, потом демонтирована на реконструкцию. Ни каких повреждений не обнаружил.


Ну а сейчас он вот такой

Здесь небольшой видеоролик про этот Вертяк:

Ну а я продолжаю искать, испытывать и строить другие варианты, и остановиться уже не могу.
Наверно еще опишу другие конструкции.