Способ измерения комплайнса легких. Главные расчетные параметры респираторной механикиresistance, elastance, compliance. Лекции по ивл

Условный рефлекс - понятие, введенное И.П. Павловым для обозначения динамической связи между условным раздражителем и реакцией индивида, первоначально основанной на безусловном раздражителе.

Сравнение условных и безусловных рефлексов :

безусловные условные
Имеются с рождения Приобретаются в течение жизни
В течение жизни не изменяются и не исчезают Могут изменяться или исчезать в течение жизни
Одинаковые у всех организмов одного вида У каждого организма свои собственные, индивидуальные
Приспосабливают организм к постоянным условиям Приспосабливают организм к изменяющимся условиям
Рефлекторная дуга проходит через спинной мозг или ствол головного Временная связь образуется в коре больших полушарий
Примеры
Выделение слюны при попадании лимона в рот Выделение слюны при виде лимона
Сосательный рефлекс новорожленного Реакция 6-месячного ребенка на бутылочку с молоком
Чихание, кашель, отдергивание руки от горячего чайника Реакция кошки/собаки на кличку

Биологическое значение условных рефлексов в жизни человека и животных огромно, так как они обеспечивают их приспособительное поведение - позволяют точно ориентироваться в пространстве и времени, находить пищу (по виду, запаху), избегать опасности, устранять вредные для организма воздействия. С возрастом число условных рефлексов возрастает, приобретается опыт поведения, благодаря которому взрослый организм оказывается лучше приспособленным к окружающей среде, чем детский. Выработка условных рефлексов лежит в основе дрессировки животных, когда тот или иной условный рефлекс образуется в результате сочетания с безусловным (дача лакомства и др.).

Классификация условных рефлексов по биологическому признаку:

Пищевые;

Половые;

Оборонительные;

Двигательные;

Ориентировочные - реакция на новый раздражитель.

Ориентировочный рефлекс осуществляется в 2 фазы:

Стадия неспецифической тревоги - первая реакция на новый раздражитель: изменяются двигательные реакции, вегетативные реакции, изменяется ритм электроэнцефалограммы. Продолжительность этой стадии зависит от силы и значимости раздражителя;

Стадия исследовательского поведения: восстанавливается двигательная активность, вегетативные реакции, ритм электроэнцефалограммы. Возбуждение охватывает большой отдел коры головного мозга и образования лимбической системы. Результат - познавательная деятельность.

Отличия ориентировочного рефлекса от других условных рефлексов:

Врожденная реакция организма;

Он может угасать при повторении действия раздражителя.

То есть ориентировочный рефлекс занимает промежуточное место между безусловным и условным рефлексом.

Классификация условных рефлексов по характеру условного сигнала:

Натуральные - условные рефлексы, вызываемые раздражителями, действующими в естественных условиях: вид, запах, разговор о пище;

Искусственные - вызываются раздражителями, не связанными с данной реакцией в нормальных условиях.

Классификация условных рефлексов по сложности условного сигнала:

Простые - условный сигнал состоит из 1 раздражителя (свет вызывает выделение слюны);

Сложные - условный сигнал состоит из комплекса раздражителей:

условные рефлексы, возникающие на комплекс одновременно действующих раздражителей;

условные рефлексы, возникающие на комплекс последовательно действующих раздражителей, каждый из них "наслаивается" на предыдущий;

условный рефлекс на цепь раздражителей также действующих друг за другом, но не "наслаивающихся" друг на друга.

Классификация условных рефлексов по виду раздражителя:

Экстероцептивные - возникают наиболее легко;

Интероцептивные;

Проприоцептивные. У ребенка первыми появляются проприоцептивные рефлексы (сосательный рефлекс на позу).

Классификация условных рефлексов по изменению той или иной функции:

Положительные - сопровождаются усилением функции;

Отрицательные - сопровождаются ослаблением функции.

Классификация условных рефлексов по характеру ответной реакции:

Соматические;

Вегетативные (сосудо-двигательные)

Классификация условных рефлексов по сочетанию условного сигнала и безусловного раздражителя во времени:

Совпадающие наличные условные рефлексы (наличные - безусловный раздражитель действует при наличии условного сигнала, действие этих раздражителей заканчивается одновременно) - безусловный раздражитель действует через 1-2 с после условного сигнала;

Отставленные - безусловный раздражитель действует через 3-30 с после условного сигнала;

Запоздалые - безусловный раздражитель действует через 1-2 мин после условного сигнала.

Первые два возникают легко, последний - сложно.

Следовые - безусловный раздражитель действует после прекращения действия условного сигнала. В данном случае условный рефлекс возникает на следовые изменения в мозговом отделе анализатора. Оптимальный интервал - 1-2 мин.

Классификация условных рефлексов по различным порядкам:

Условный рефлекс 1-го порядка - вырабатывается на базе безусловного рефлекса;

Условный рефлекс 2-го порядка - вырабатывается на базе условного рефлекса 1-го порядка и т. д.

У собак можно выработать условные рефлексы до 3-го порядка, у обезьян - до 4-го порядка, у детей - до 6-го порядка, у взрослых - до 9-го порядка.

2. Гормоны мозгового вещества надпочечников, их роль, регуляция образования и выделения в кровь.

Мозговое вещество надпочечников содержит хромаффинные клетки , названные так из-за избирательной окраски хромом. По происхождению и функции они являются постганглионарными нейронами симпатической нервной системы, однако, в отличие от типичных нейронов, клетки надпочечников:

Синтезируют больше адреналина, а не норадреналина (отношение у человека между ними 6:1)

Накапливая секрет в гранулах, после поступления нервного стимула они немедленно выбрасывают гормоны в кровь.

Регуляция секреции гормонов мозгового вещества надпочечников осуществляется благодаря наличию гипоталамо-симпатоадреналовой оси, при этом симпатические нервы стимулируют хромаффинные клетки через холинорецепторы, выделяя медиатор ацетилхолин. Хромаффинные клетки являются частью общей системы нейроэндокринных клеток организма, или APUD-системы, т. е. системы поглощения и декарбоксилирования аминов и их предшественников. К этой системе относятся нейросекреторные клетки гипоталамуса, клетки желудочно-кишечного тракта (энтериноциты), продуцирующие кишечные гормоны, клетки островков Лангерганса поджелудочной железы и К-клетки щитовидной железы.

Гормоны мозгового вещества - катехоламины - образуются из аминокислоты тирозина поэтапно: тирозин-ДОФА-дофамин-норадреналин- адреналин. Хотя надпочечник и секретирует значительно больше адреналина, тем не менее в состоянии покоя в крови содержится в четыре раза больше норадреналина, так как он поступает в кровь и из симпатических окончаний. Секреция катехоламинов в кровь хромаффинными клетками осуществляется с обязательным участием Са2+, кальмодулина и особого белка синексина, обеспечивающего агрегацию отдельных гранул и их связь с фосфолипидами мембраны клетки.

Катехоламины называют гормонами срочного приспособления к действию сверхпороговых раздражителей среды. Физиологические эффекты катехоламинов обусловлены различиями в адренорецепторах (альфа и бета) клеточных мембран, при этом адреналин обладает большим сродством к бета-адренорецепторам, а норадреналин - к альфа. Чувствительность адренорецепторов к адреналину увеличивают гормоны щитовидной железы и глюкокортикоиды.

Основные функциональные эффекты адреналина проявляются в виде:

Учащения и усиления сердечных сокращений

Сужения сосудов кожи и органов брюшной полости

Повышения теплообразования в тканях

Ослабления сокращений желудка и кишечника

Расслабления бронхиальной мускулатуры

Стимуляции секреции ренина почкой

Уменьшения образования мочи

Повышения возбудимости нервной системы, скорости рефлекторных процессов и эффективности приспособительных реакций

Адреналин вызывает мощные метаболические эффекты в виде усиленного расщепления гликогена в печени и мышцах из-за активации фосфорилазы, а также подавление синтеза гликогена, угнетение потребления глюкозы тканями, что в целом ведет к гипергликемии. Адреналин вызывает активацию распада жира, мобилизацию в кровь жирных кислот и их окисление. Все эти эффекты противоположны действию инсулина, поэтому адреналин называют контринсулярным гормоном. Адреналин усиливает окислительные процессы в тканях и повышает потребление ими кислорода. Таким образом, как кортикостероиды, так и катехоламины обеспечивают активацию приспособительных защитных реакций организма и их энергоснабжение, повышая устойчивость организма к неблагоприятным влияниям среды.

В мозговом веществе надпочечников, кроме катехоламинов, образуется и пептидный гормон адреномедуллин. Кроме мозгового вещества надпочечников и плазмы крови он выявлен в тканях легких, почек и сердца, а также эндотелиальных клетках сосудов. Этот пептид состоит у человека из 52 аминокислот. Основное действие гормона заключается в мощном сосудорасширяющем эффекте, в связи с чем его называют гипотензивным пептидом. Второй физиологический эффект гормона заключается в подавлении продукции альдостерона клетками клубочковой зоны коры надпочечников. При этом пептид подавляет не только базальный, фоновый уровень образования гормона, но и его секрецию, стимулированную высоким уровнем калия в плазме крови или действием ангиотензина-II.

Регуляция процессинга гормонов в мозговом слое надпочечников осуществляется нервной системой. При раздражении брюшных симпатических нервов усиливается, а при их пересечении - уменьшается выделение адреналина и норадреналина надпочечниками. Синтез и секреция катехоламинов связаны с деполяризацией мембраны и увеличением количества Са2 + в клетке. Этот механизм необходим для выделения адреналина и норадреналина путем экзоцитоза. Секреция гормонов мозгового слоя контролируется гипоталамусом, особенно задней группой ядер. На секрецию адреналина влияет также кора большого мозга. Об этом свидетельствуют, в частности, опыты с выработкой условных рефлексов выделения адреналина в сосудистое русло. Выделение надпочечниками адреналина усиливается при эмоциональном возбуждении (страх, гнев, боль и т.д.), мышечной работе, переохлаждении и др. Выделение адреналина надпочечниками стимулируется также снижением уровня глюкозы в крови (гипогликемией), благодаря чему содержание глюкозы повышается.

3. Механизм лёгочной вентиляции. Лёгочный резистанс и компланс. Эластическая тяга лёгких, две её составляющие. Лёгочные объёмы и ёмкости, основные параметры лёгочной вентиляции.

Грудная клетка и легкие разделены плевральной полостью, которая представляет собой герметичную щель, содержащую небольшое количество жидкости (5 мл). Объем грудной клетки больше, чем объем легких. Поэтому легкие все время растянуты. Степень растяжения легких определяется транспульмональным давлением - разница между давлением в легких (альвеолах) и плевральной полости. В области диафрагмы это давление обозначается как трансдиафрагмальное.

При этом в легких постоянно действует сила, стягивающая их, которая получила название "эластической тяги легких". Она зависит не только от эластичности легких, но, в значительной степени, и от силы поверхностного натяжения слизи, покрывающей альвеолы. Жидкость покрывает огромную поверхность альвеол и тем самым стягивает их. Однако сила поверхностного натяжения альвеол уменьшается за счет вырабатываемого в легких вещества сурфактанта. Благодаря этому легкие становятся более растяжимыми.

Эластичная тяга легких создает отрицательное давление в плевральной полости. При выдохе оно равно - 6 мм рт.ст. На вдохе при растяжении грудной клетки давление в плевральной полости становится еще более отрицательным - 10 мм рс.ст.

Понятие о пневмотораксе. Попадание воздуха в плевральную полость извне (открытый пневмоторакс) или из полости легких (закрытый пневмоторакс) уравновешивает давление в плевральной полости с атмосферным и легкое за счет эластической тяги спадается. У человека в связи с особенностями грудной полости происходит спадание одного легкого.

Наличие газообмена между легкими и кровью постоянно требует обновления воздуха в легких альвеолярного воздуха, т.к. газовый состав воздуха будет постоянно изменяться в сторону снижения концентрации О2 и накопления СО2.


Вентиляция легких , т.е. обмен газов между внешней средой и альвеолярным воздухом обеспечивается за счет вдоха (инспирация) и выдоха (экспирация ), которые характеризуются глубиной вдоха и выдоха и частотой дыхания.

Выделяют два вида дыхательных движений - спокойный вдох и выдох и форсированный вдох и выдох. Для нормального газообмена в атмосфере с обычным газовым составом здоровому взрослому человеку в спокойном состоянии необходимо 14-18 дыхательных движений в минуту, при длительности вдоха 2 с, объемной скорости вдоха 250 мл/с.

При вдохе преодолевается ряд сил:

Эластическое сопротивление грудной клетки;

Эластическое сопротивление внутренних органов, оказывающих давление на диафрагму;

Эластическое сопротивление легких;

Вязко-динамическое сопротивление всех перечисленных выше тканей;

Аэродинамическое сопротивление дыхательных путей;

Силу тяжести грудной клетки;

Силы инерции перемещаемых масс (органов).

Воздухоносные пути. Верхняя часть воздухоносных путей представлена полостью носа и носоглотки.


Функции воздухоносных путей (полости носа, носоглотки, респираторной зоны трахеобронхиального дерева):

Кондиционирование воздуха.

Проведение потока воздуха.

Иммунная защита.

Биомеханика спокойного вдоха. В развитии спокойного вдоха играют роль : сокращение диафрагмы и сокращение наружных косых межреберных и межхрящевых мышц.
Под влиянием нервного сигнала диафрагма (наиболее сильная мышца вдоха) сокращается, ее мышцы расположены радиально по отношению к сухожильному центру, поэтому купол диафрагмы уплощается на 1,5-2,0 см, при глубоком дыхании - на 10 см, растет давление в брюшной полости. Размер грудной клетки увеличивается в вертикальном размере.
Под влиянием нервного сигнала сокращаются наружные косые межреберные и межхрящевые мышцы . Возникает разница давлений между окружающей средой и легкими (трансреспираторное давление ).

Трансреспираторное давление (Ртрр ) - это разница между давлением в альвеолах (Ральв) и внешним (атмосферным) давлением (Рвнеш). Ртрр= Ральв. - Рвнешн, Равняется на вдохе - 4 мм рт. ст.

Эта разница и заставляет войти порцию воздуха через воздухоносные пути в легкие. Это и есть вдох.

Биомеханика спокойного выдоха . Спокойных выдох осуществляется пассивно, т.е. не происходит сокращения мышц, а грудная клетка спадается за счет сил, которые возникли при вдохе.

Причины, вызывающие выдох:

- Тяжесть грудной клетки. Поднятые ребра опускаются под действием тяжести

Органы брюшной полости, оттесненные диафрагмой вниз при вдохе, поднимают диафрагму

Эластичность грудной клетки и легких. За счет них грудная клетка и легкие занимают исходное положение Трансреспираторное давление в конце выдоха составляет =+ 4 мм.рт.ст.

Биомеханика форсированного вдоха. Форсированный вдох осуществляется за счет участия дополнительных мышц.

Легочные объемы:

- Общая емкость легких (ОЕЛ) - количество воздуха, находящееся в легких после максимального вдоха. ОЕЛ колеблется в больших пределах (от 0,5 до 8 литров) и зависит от роста, возраста, пола, состояния легких и грудной клетки.
ОЕЛ состоит из 2 частей:

- Жизненная емкость легких (ЖЕЛ) - объема, который человек может максимально выдохнуть после глубокого вдоха (в норме ЖЕЛ=Должная ЖЕЛ±10%),
и остаточного объема (ОО) - объема воздуха, который остается в дыхательной системе даже после максимального выдоха (N=1-1,2 л). Увеличение ОО снижает эффективность дыхания. Делится на коллапсный объем (выходит при спадании легкого) и минимальный объем (истинный остаточный).

Увеличение ЖЕЛ свидетельствует о повышении функциональных возможностей дыхательного аппарата.

ЖЕЛ подразделяют на 3 составные части :

- Дыхательный объем (ДО) - это объем воздуха, который человек вдыхает и выдыхает при каждом дыхательном цикле. В покое он составляет в среднем 20% от ЖЕЛ (0,3-0,6 л). Является показателем глубины дыхания.

- Резервный объем вдоха (РОвд) - воздух, который пациент может дополнительно вдохнуть, после спокойного вдоха /40% от ЖЕЛ/ (1,5-2,5 л).

- Резервный объем выдоха (РОвд) - воздух, который пациент может максимально выдохнуть после спокойного выдоха /40% от ЖЕЛ/ (1,5-2,5 л).

Соотношение составных частей ЖЕЛ очень изменчиво. При физической нагрузке ДО может увеличиться до 80%, что сопровождается уменьшением РОвд и РОвыд до 10 %.


Билет 35

1. Структурно-функциональная схема и механизм образования условного рефлекса. Правила выработки условных рефлексов.

Структурно-функциональные основы образования условных рефлексов:

Схема замыкания временной связи по И. П. Павлову: афферентная импульсация при действии условного раздражителя поступает в сенсорную кору, затем через ассоциативную кору выходит на корковое представительство безусловного рефлекса, а затем поступает в эфферентные пути через соматические и вегетативные центры.

Современные представления о структуре условного рефлекса дополнительно включают в нее ретикулярную формацию, лимбическую систему, базальные ядра и другие структуры головного мозга.

Стадии образования условных рефлексов:

Стадия генерализации, когда широкий спектр раздражителей, а не только подкрепляемый, вызывает реакцию. Она осуществляется по механизмам иррадиации. Ее физиологическое значение в том, что она обеспечивает ответ без предварительного обучения на все раздражители, сходные с подкрепляемым.

Стадия специализации. Ее физиологическое значение состоит в том, что она обеспечивает точный, дифференцированный ответ только на подкрепляемый сигнал, при многократном повторении этот ответ автоматизируется. Механизм – доминанта.

Нейрофизиологические механизмы образования временной связи:

Образуются два очага повышенной возбудимости: более слабого – условного сигнала, более сильного – безусловного подкрепления. Доминантность последнего создается мотивационным возбуждением (например, условный пищевой рефлекс у сытого животного не образуется). Формирование доминанты приводит к функциональной конвергенции, расширению рецептивного поля рефлекса, его генерализации.

Условный раздражитель встраивается в рефлекторную цепь безусловного рефлекса по принципу «общего конечного пути».

Между очагами возбуждения происходят иррадиация и межклеточная реверберация возбуждения.

Неоднократное сочетание условного раздражителя и подкрепления, а также реверберация возбуждения приводят к суммации возбуждения.

Формируется феномен проторения пути и долговременной потенциации с участием гиппокампа, медиаторов и модуляторов синаптической передачи (см. ниже в п. 6.3).

ЭЭГ-признаки образования временной связи: реакция десинхронизации , т. е. смена α-ритма β-ритмом, является показателем активации мозговых структур и способствует образованию долговременной потенциации в коре больших полушарий; синхронизация электрической активности разных отделов мозга в диапазоне γ-частот отражает установление связи между удаленными отделами ЦНС при образовании условного рефлекса.

Дифференцировочное торможение приводит к специализации условного рефлекса.

Нейрохимические механизмы увеличения проводимости через синапсы (формирование долговременной потенциации):

Глутамат через быстрые НМДА-рецепторы постсинаптической мембраны (имеющие высокопроницаемый кальциевый канал) вызывает вход Са2+ в постсинаптический нейрон и активацию Са2+-зависимых протеаз, что является пусковым механизмом повышения эффективности синаптической передачи.

Длительное (часами) поддержание повышенной синаптической проводимости происходит в результате активации глутаматом медленных квисквалатных рецепторов, которые (через ФЛС → ИФ3 и ДАГ) вызывают выход Са2+ из агранулярной ЭПС и через геном клетки (активацию ранних генов – универсальных регуляторов генома) синтез нейромодуляторных пептидов и белков памяти.

Секрецию глутамата из пресинаптического окончания усиливают посредники (NO, арахидоновая кислота и др.), выделяющиеся постсинаптическим нейроном, а также глутамат из синаптической щели через рецепторы пресинаптической мембраны (положительная обратная связь).

В действительности механизмы потенциации намного сложнее. В повышении эффективности синаптической передачи глутаматные рецепторы взаимодействуют (через вторых посредников и изменения мембранного потенциала) с адренорецепторами, холинорецепторами и ГАМК-рецепторами мембраны нейрона. Модулируют синаптическую передачу нейропептиды и нейрогормоны (эндорфины, энкефалины, ангиотензин II, вазопрессин, окситоцин).

Ультраструктурные механизмы образования временной связи:

При образовании условных рефлексов происходит увеличение синаптической поверхности дендритов нейронов, числа и площади аксо-шипиковых синапсов, что повышает эффективность передачи сигналов между нейронами.

Происходят увеличение количества концевых разветвлений аксона и их миелинизация олигодендроцитами, что увеличивает межнейронные связи и эффективность передачи возбуждения.

Для выработки условного рефлекса необходимо:

Наличие двух раздражителей, один из которых безусловный (пища, болевой раздражитель и др.), вызывающий безусловно-рефлекторную реакцию, а другой - условный (сигнальный), сигнализирующий о предстоящем безусловном раздражении (свет, звук, вид пищи и т.д.);

Многократное сочетание условного и безусловного раздражителей (хотя возможно образование условного рефлекса при их однократном сочетании);

Условный раздражитель должен предшествовать действию безусловного;

В качестве условного раздражителя может быть использован любой раздражитель внешней или внутренней среды, который должен быть по возможности индифферентным, не вызывать оборонительной реакции, не обладать чрезмерной силой и способен привлекать внимание;

Безусловный раздражитель должен быть достаточно сильным, в противном случае временная связь не сформируется;

Возбуждение от безусловного раздражителя должно быть более сильным, чем от условного;

Необходимо устранить посторонние раздражители, так как они могут вызывать торможение условного рефлекса;

Животное, у которого вырабатывается условный рефлекс, должно быть здоровым;

При выработке условного рефлекса должна быть выражена мотивация, например, при выработке пищевого слюноотделительного рефлекса животное должно быть голодным, у сытого - этот рефлекс не вырабатывается.

2. Лимфообразование и лимфоотток.

Лимфатическая система - часть сосудистой системы у позвоночных животных и человека, дополняющая сердечно-сосудистую систему. Она играет важную роль в обмене веществ и очищении клеток и тканей организма. В отличие от кровеносной системы, лимфатическая система млекопитающих незамкнутая и не имеет центрального насоса. Лимфа, циркулирующая в ней, движется медленно и под небольшим давлением.

В структуру лимфатической системы входят : лимфатические капилляры, сосуды, узлы, стволы и протоки.

Лимфообразование: в результате фильтрации плазмы в кровеносных капиллярах жидкость выходит в интерстициальное (межклеточное) пространство, где вода и электролиты частично связываются с коллоидными и волокнистыми структурами, а частично образуют водную фазу. Так образуется тканевая жидкость, часть которой реабсорбируется обратно в кровь, а часть - поступает в лимфатические капилляры, образуя лимфу. Таким образом, лимфа является пространством внутренней среды организма, образуемым из интерстициальной жидкости. Образование и отток лимфы из межклеточного пространства подчинены силам гидростатического и онкотического давления и происходят ритмически.

Механизм образования лимфы основывается на процессах фильтрации, диффузии и осмоса, разности гидростатического давления крови в капиллярах и межтканевой жидкости. Среди этих факторов большое значение придают проницаемости лимфатических капилляров в связи с особенностями ультраструктурного строения их стенки и взаимоотношений с окружающей соединительной тканью.

Существует два пути, по которым различные по размеру частицы проходят через стенку лимфатических капилляров в их просвет - межклеточный и через эндотелий. Первый путь основан на том, что межклеточные щели стенок капилляров могут расширяться и пропускать из окружающих тканей крупнодисперсные частицы. Межклеточные соединения могут быть открытыми и закрытыми. Через открытые соединения, величина которых колеблется от 10 нм до 10 мкм, могут свободно проходить в зависимости от локализации и условий функционирования органа крупные и мелкие частицы. Второй путь транспорта веществ в лимфатический капилляр основан на их непосредственном прохождении через цитоплазму эндотелиальных клеток с помощью микропиноцитозных пузырьков и везикул. Прохождение жидкости и различных частиц по обоим путям осуществляется одновременно.

Согласно классической теории Старлинга (1894), помимо разницы гидростатического давления в кровеносных капиллярах и тканях значительная роль в лимфообразовании принадлежит онкотическому давлению . Повышение гидростатического давления крови способствует образованию лимфы, напротив, увеличение онкотического давления препятствует этому.

Процесс фильтрации жидкости из крови происходит в артериальном конце капилляра, возвращается же жидкость в кровяное русло в венозном. Это связано, во-первых, с разницей кровяного давления в артериальном и венозном концах капилляра, во-вторых, с повышением онкотического давления в венозном конце капилляра. В организме человека средняя скорость фильтрации во всех кровеносных капиллярах составляет примерно 14 мл/мин, т. е. 20 л/сут; скорость обратного всасывания - около 12,5 мл/мин, или 18 л/сут. Следовательно, в лимфатические капилляры попадает 2 л жидкости в сутки.

Снижение онкотического давления плазмы крови влечет за собой усиленный переход жидкости из крови в ткани, повышение осмотического давления межтканевой жидкости и лимфы, сопровождается усиленным образованием лимфы. Этот механизм особенно отчетливо выступает при накоплении в тканевой жидкости низкомолекулярных продуктов метаболизма, например, при мышечной работе.

Эти особенности организации стенки лимфатических капилляров, а также соотношение гидростатического и онкотического давлений определяют всасывание коллоидных растворов, взвесей, бактерий, инородных и других частиц. Проницаемость капилляров может изменяться в ту или иную сторону при различных функциональных состояниях органа и под влиянием некоторых веществ - гистамина, пептидов и др. Она зависит также от механических, химических, нервных и гуморальных факторов, поэтому постоянно меняется. Например, при уменьшении количества белка в плазме крови возрастает объем лимфы, протекающей по грудному протоку. Это связано с понижением всасывания жидкости в венозных частях капилляров в результате падения осмотического давления крови и повышением поступления ее в лимфатические капилляры.

Цикл работы начальных отделов лимфатического русла слагается из трех последовательных фаз: наполнения, промежуточной фазы и фазы изгнания резорбированной жидкости в проксимальные отделы.

Избыточная гидратация интерстиция , окружающего лимфатические капилляры, сопровождается открытием стыков между эндотелиоцитами капиллярной стенки и повышением ее проницаемости. Процесс заполнения начальных отделов лимфатического русла облегчается отсутствием в них базальной мембраны.

Заполнение просветов лимфатических микрососудов жидкостью, содержащей белки, изменяет градиент давления на стенке, обусловливая захлопывание межэндотелиальных стыков в промежуточную фазу процесса и предупреждая утечку макромолекул в интерстиций. Содержание белка в лимфе микро сосудов примерно в 3 раза выше, чем в интерстиции, причем в фазе изгнания этот показатель в 5 раз больше, чем при заполнении капилляров.

Фаза изгнания, завершающая цикл, определяется несколькими факторами. При компрессии элементов лимфатического русла некоторая часть жидкости и мелкодисперсных молекул отфильтровывается в ткань. Однако частицы и макромолекулярные белки, резорбированные капиллярами, остаются в оттекающей лимфе благодаря фиксированным межэндотелиальным стыкам, отводящим лимфу и повышающим плотность сосудистой стенки.

Эвакуация лимфы, образующейся в органе, осуществляется экстраорганными сосудами, которые выходят из его ворот к одной (яичник, яички, почки, легкие, сердце) или нескольким (щитовидная и поджелудочная железы, желудок, тонкий и толстый кишечник) группам лимфоузлов.

Скорость движения лимфы не одинакова в разных областях тела, однако она значительно меньше, чем скорость движения крови в венах. В работающих органах отток лимфы многократно увеличивается. Лимфоотток зависит от рефлекторных влияний. Он изменяется при повышении давления в каротидном синусе и воздействиях на другие рефлексогенные зоны. При стимуляции идущих к лимфатическим сосудам симпатических волокон можно наблюдать полное прекращение движения лимфы в результате спазма лимфатических сосудов.

Проводящие пути

Нос - первые изменения поступающего воздуха происходят в носу, где он очищается, согревается и увлажняется. Этому способствует волосяной фильтр, преддверие и раковины носа. Интенсивное кровоснабжение слизистой оболочки и пещеристых сплетений раковин обеспечивает быстрое согревание или охлаждение воздуха до температуры тела. Испаряющаяся со слизистой оболочки вода увлажняет воздух на 75-80%. Длительное вдыхание воздуха пониженной влажности приводит к высыханию слизистой оболочки, попаданию сухого воздуха в легкие, развитию ателектазов, пневмонии и повышению сопротивления в воздухоносных путях.


Глотка отделяет пищу от воздуха, регулирует давление в области среднего уха.


Гортань обеспечивает голосовую функцию, с помощью надгортанника предотвращая аспирацию, а смыкание голосовых связок является одним из основных компонентов кашля.

Трахея — основной воздуховод, в ней согревается и увлажняется воздух. Клетки слизистой оболочки захватывают инородные вещества, а реснички продвигают слизь вверх по трахее.

Бронхи (долевые и сегментарные) заканчиваются концевыми бронхиолами.


Гортань, трахея и бронхи также участвуют в очищении, согревании и увлажнении воздуха.


Строение стенки проводящих воздухоносных путей (ВП) отличается от структуры дыхательных путей газообменной зоны. Стенка проводящих воздухоносных путей состоит из слизистой оболочки, слоя гладких мышц, подслизистой соединительной и хрящевой оболочек. Эпителиальные клетки воздухоносных путей снабжены ресничками, которые, ритмично колеблясь, продвигают защитный слой слизи в направлении носоглотки. Слизистая оболочка ВП и легочная ткань содержат макрофаги, фагоцитирующие и переваривающие минеральные и бактериальные частицы. В норме слизь из дыхательных путей и альвеол постоянно удаляется. Слизистая оболочка ВП представлена реснитчатым псевдомногослойным эпителием, а также секреторными клетками, выделяющими слизь, иммуноглобулины, комплемент, лизоцим, ингибиторы, интерферон и другие вещества. В ресничках содержится много митохондрий, обеспечивающих энергией их высокую двигательную активность (около 1000 движений в 1 мин.), что позволяет транспортировать мокроту со скоростью до 1 см/мин в бронхах и до 3 см/мин в трахее. За сутки из трахеи и бронхов в норме эвакуируется около 100 мл мокроты, а при патологических состояниях до 100 мл/час.


Реснички функционируют в двойном слое слизи. В нижнем находятся биологически активные вещества, ферменты, иммуноглобулины, концентрация которых в 10 раз больше, чем в крови. Это обуславливает биологическую защитную функцию слизи. Верхний слой ее механически защищает реснички от повреждений. Утолщение или уменьшение верхнего слоя слизи при воспалении или токсическом воздействии неизбежно нарушает дренажную функцию реснитчатого эпителия, раздражает дыхательные пути и рефлекторно вызывает кашель. Чихание и кашель защищают легкие от проникновения минеральных и бактериальных частиц.


Альвеолы


В альвеолах происходит газообмен между кровью легочных капилляров и воздухом. Общее число альвеол равно примерно 300 млн., а суммарная площадь их поверхности - примерно 80 м 2 . Диаметр альвеол составляет 0,2-0,3 мм. Газообмен между альвеолярным воздухом и кровью осуществляется путем диффузии. Кровь легочных капилляров отделена от альвеолярного пространства лишь тонким слоем ткани - так называемой альвеолярно-капиллярной мембраной, образованной альвеолярным эпителием, узким интерстициальным пространством и эндотелием капилляра. Общая толщина этой мембраны не превышает 1 мкм. Вся альвеолярная поверхность легких покрыта тонкой пленкой, называемой сурфактантом.

Сурфактант уменьшает поверхностное натяжение на границе между жидкостью и воздухом в конце выдоха, когда объем легкого минимален, увеличивает эластичность легких и играет роль противоотечного фактора (не пропускает пары воды из альвеолярного воздуха), в результате чего альвеолы остаются сухими. Он снижает поверхностное натяжение при уменьшении объема альвеолы во время выдоха и предупреждает её спадение; уменьшает шунтирование, что улучшает оксигенацию артериальной крови при более низком давлении и минимальном содержании О 2 во вдыхаемой смеси.


Сурфактантный слой состоит из:

1) собственно сурфактанта (микропленки из фосфолипидных или полипротеидных молекулярных комплексов на границе с воздушной средой);

2) гипофазы (глубжележащего гидрофильного слоя из белков, электролитов, связанной воды, фосфолипидов и полисахаридов);

3) клеточного компонента, представленного альвеолоцитами и альвеолярными макрофагами.


Основными химическими составляющими сурфактанта является липиды, белки и углеводы. Фосфолипиды (лецитин, пальмитиновая кислота, гепарин) составляют 80-90% его массы. Сурфактант покрывает непрерывным слоем и бронхиолы, понижает сопротивление при дыхании, поддерживает наполнение

При низком давлении растяжения, уменьшает действие сил, вызывающих накопление жидкости в тканях. Кроме того, сурфактант очищает вдыхаемые газы, отфильтровывает и улавливает вдыхаемые частицы, регулирует обмен воды между кровью и воздушной средой альвеолы, ускоряет диффузию СО 2 , обладает выраженным антиокислительным действием. Сурфактант очень чувствителен к различным эндо- и экзогенным факторам: нарушениям кровообращения, вентиляции и метаболизма, изменению РО 2 во вдыхаемом воздухе, загрязнению его. При дефиците сурфактанта возникают ателектазы и РДС новорожденных. Примерно 90-95% альвеолярного сурфактанта повторно перерабатывается, очищается, накапливается и ресекретируется. Период полувыведения компонентов сурфактанта из просвета альвеол здоровых легких составляет около 20 ч.

Легочные объёмы

Вентиляция легких зависит от глубины дыхания и частоты дыхательных движений. Оба этих параметра могут варьировать в зависимости от потребностей организма. Есть ряд объемных показателей, характеризующих состояние легких. Нормальные средние значения для взрослого человека следующие:


1. Дыхательный объем (ДО- VT - Tidal Volume) - объем вдыхаемого и выдыхаемого воздуха при спокойном дыхании. Нормальные значения - 7-9мл/кг.


2. Резервный объем вдоха (РОвд - IRV - Inspiratory Reserve Volume) - объем, который может дополнительно поступить после спокойного вдоха, т.е. разница между нормальной и максимальной вентиляцией. Нормальное значение: 2-2,5 л (около 2/3 ЖЕЛ).

3. Резервный объем выдоха (РОвыд - ERV - Expiratory Reserve Volume) - объем, который можно дополнительно выдохнуть после спокойного выдоха, т.е. разница между нормальным и максимальным выдохом. Нормальное значение: 1,0-1,5 л (около 1/3 ЖЕЛ).


4.Остаточный объем (ОО - RV - Residal Volume) - объем, остающийся в легких после максимального выдоха. Около 1,5-2,0 л.


5. Жизненная емкость легких (ЖЕЛ - VT - Vital Capacity) — количество воздуха, которое может быть максимально выдохнуто после максимального вдоха. ЖЕЛ является показателем подвижности легких и грудной клетки. ЖЕЛ зависит от возраста, пола, размеров и положения тела, степени тренированности. Нормальные значения ЖЕЛ - 60-70 мл/кг - 3,5-5,5 л.


6. Резерв вдоха (РВ) -Ёмкость вдоха (Евд - IC - Inspiritory Capacity) - максимальное количество воздуха, которое может поступить в легкие после спокойного выдоха. Равен сумме ДО и РОвд.

7. Общая емкость легких (ОЕЛ - TLC - Total lung capacity) или максимальная емкость легких - количество воздуха, содержащееся в легких на высоте максимального вдоха. Состоит из ЖЕЛ и ОО и рассчитывается как сумма ЖЕЛ и ОО. Нормальное значение около 6,0 л.
Исследование структуры ОЕЛ является решающим в выяснении путей увеличения или снижения ЖЕЛ, что может иметь существенное практическое значение. Увеличение ЖЕЛ может быть расценено положительно только в том случаи, если ОЕЛ не меняется или увеличивается, но меньше, чем ЖЕЛ, что происходит при увеличении ЖЕЛ за счет уменьшения ОО. Если одновременно с увеличением ЖЕЛ происходит еще большее увеличение ОЕЛ, то это нельзя считать положительным фактором. При ЖЕЛ ниже 70% ОЕЛ функция внешнего дыхания глубоко нарушена. Обычно при патологических состояниях ОЕЛ и ЖЕЛ изменяются одинаково, за исключением обструктивной эмфиземы легких, когда ЖЕЛ, как правило, уменьшается, ОО увеличивается, а ОЕЛ может оставаться нормальной или быть выше нормы.


8. Функциональная остаточная емкость (ФОЕ - FRC - Functional residual volume) - количество воздуха, которое остается в легких после спокойного выдоха. Нормальные значения у взрослых - от 3 до 3,5 л. ФОЕ = ОО + РОвыд. По определению ФОЕ - объем газа, который остается в легких при спокойном выдохе и может быть мерой области газообмена. Она образуется в результате баланса между противоположно направленными эластическими силами легких и грудной клетки. Физиологическое значение ФОЕ состоит в частичном обновлении альвеолярного объема воздуха во время вдоха (вентилируемый объем) и указывает на объем альвеолярного воздуха, постоянно находящегося в легких. Со снижением ФОЕ связаны развитие ателектазов, закрытие мелких дыхательных путей, уменьшение податливости легких, увеличение альвеолярно-артериального различия по О 2 в результате перфузии в ателектазированных участках легких, снижение вентиляционно-перфузионного соотношения. Обструктивные вентиляционные нарушения ведут к повышению ФОЕ, рестриктивные нарушения - к снижению ФОЕ.


Анатомическое и функциональное мертвое пространство


Анатомическим мертвым пространством называют объем воздухоносных путей, в котором не происходит газообмен. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Объем мертвого пространства зависит от роста и положения тела. Приближенно можно считать, что у сидящего человека объем мертвого пространства (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким образом, у взрослых он равен около 150-200 мл (2 мл/кг массы тела).


Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена по причине сниженного или отсутствующего кровотока. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью.


Альвеолярная вентиляция и вентиляция мертвого пространства

Часть минутного объема дыхания, достигающая альвеол, называется альвеолярной вентиляцией, остальная его часть составляет вентиляцию мертвого пространства. Альвеолярная вентиляция служит показателем эффективности дыхания в целом. Именно от этой величины зависит газовый состав, поддерживаемый в альвеолярном пространстве. Что касается минутного объема, то он лишь в незначительной степени отражает эффективность вентиляции легких. Так, если минутный объем дыхания нормальный (7л/мин), но дыхание частое и поверхностное (ДО-0,2 л, ЧД-35/мин), то вентилироваться

Будет главным образом мертвое пространство, в которое воздух поступает раньше, чем в альвеолярное; в этом случае вдыхаемый воздух почти не будет достигать альвеол. Поскольку объем мертвого пространства постоянен, альвеолярная вентиляция тем больше, чем глубже дыхание и меньше частота.


Растяжимость (податливость) легочной ткани
Растяжимость легких является мерой эластической тяги, а также эластического сопротивления легочной ткани, которое преодолевается в процессе вдоха. Иначе говоря, растяжимость — это мера упругости легочной ткани, т. е. её податливость. Математически растяжимость выражается в виде частного от изменения объема легких и соответствующего изменения внутрилегочного давления.

Растяжимость может быть измерена отдельно для легких и для грудной клетки. С клинической точки зрения (особенно во время ИВЛ) наибольший интерес представляет именно податливость самой легочной ткани, отражающая степень рестриктивной легочной патологии. В современной литературе растяжимость легких принято обозначать термином «комплайнс» (от английского слова «compliance», сокращенно — С).


Податливость легких снижается:

С возрастом (у пациентов старше 50 лет);

В положении лежа (из-за давления органов брюшной полости на диафрагму);

Во время лапароскопических хирургических вмешательств в связи с карбоксиперитонеумом;

При острой рестриктивной патологии (острые полисегментарные пневмонии, РДС, отёк легких, ателектазирование, аспирация и т. д.);

При хронической рестриктивной патологии (хроническая пневмония, фиброз легких, коллагенозы, силикозы и т. д.);

При патологии органов, которые окружают легкие (пневмо- или гидроторакс, высокое стояние купола диафрагмы при парезе кишечника и т.д.).


Чем хуже податливость лёгких, тем большее эластическое сопротивление легочной ткани надо преодолеть, чтобы достигнуть того дыхательного объема, что и при нормальной податливости. Следовательно, в случае ухудшающейся растяжимости лёгких при достижении того же дыхательного объема давление в дыхательных путях существенно возрастает.

Данное положение очень важно для понимания: при объемной ИВЛ, когда принудительный дыхательный объём подается больному с плохой податливостью легких (без высокого сопротивления дыхательных путей), существенный рост пикового давления в дыхательных путях и внутрилегочного давления значительно увеличивает риск баротравмы.


Сопротивление дыхательных путей


Поток дыхательной смеси в легких должен преодолеть не только эластическое сопротивление самой ткани, но и резистивное сопротивление дыхательных путей Raw (аббревиатура от английского слова «resistance»). Поскольку трахеобронхиальное дерево представляет собой систему трубок различной длины и ширины, то сопротивление газотоку в легких можно определить по известным физическим законам. В целом, сопротивление потоку зависит от градиента давлений в начале и в конце трубки, а также от величины самого потока.


Поток газа в легких может быть ламинарным, турбулентным и переходным. Для ламинарного потока характерно послойное поступательное движение газа с

Различной скоростью: скорость потока наиболее высока в центре и постепенно снижается к стенкам. Ламинарный поток газа преобладает при относительно низких скоростях и описывается законом Пуазейля, в соответствии с которым сопротивление газотоку в наибольшей степени зависит от радиуса трубки (бронхов). Уменьшение радиуса в 2 раза приводит к возрастанию сопротивления в 16 раз. В связи с этим понятна важность выбора по возможности наиболее широкой эндотрахеальной (трахеостомической) трубки и поддержания проходимости трахеобронхиального дерева во время ИВЛ.
Сопротивление дыхательных путей газотоку значительно увеличивается при бронхиолоспазме, отеке слизистой оболочки бронхов, скоплении слизи и воспалительного секрета по причине сужения просвета бронхиального дерева. На сопротивление влияют также скорость потока и длина трубки (бронхов). С

Увеличением скорости потока (форсирование вдоха или выдоха) сопротивление дыхательных путей увеличивается.

Основные причины увеличения сопротивления дыхательных путей:

Бронхиолоспазм;

Отек слизистой оболочки бронхов, (обострение бронхиальной астмы, бронхит, подсвязочный ларингит);

Инородное тело, аспирация, новообразования;

Скопление мокроты и воспалительного секрета;

Эмфизема (динамическая компрессия воздухоносных путей).


Турбулентный поток характеризуется хаотичным движением молекул газа вдоль трубки (бронхов). Он преобладает при высоких объемных скоростях потока. В случае турбулентного потока сопротивление дыхательных путей возрастает, так как при этом оно в еще большей степени зависит от скорости потока и радиуса бронхов. Турбулентное движение возникает при высоких потоках, резких изменениях скорости потока, в местах изгибов и разветвлений бронхов, при резком изменении диаметра бронхов. Вот почему турбулентный поток характерен для больных ХОЗЛ, когда даже в стадии ремиссии имеет место повышенное сопротивление дыхательных путей. Это же касается больных бронхиальной астмой.


Сопротивление воздухоносных путей распределено в легких неравномерно. Наибольшее сопротивление создают бронхи среднего калибра (до 5-7-й генерации), так как сопротивление крупных бронхов невелико из-за их большого диаметра, а мелких бронхов — вследствие значительной суммарной площади поперечного сечения.


Сопротивление дыхательных путей зависит также от объема легких. При большом объёме паренхима оказывает большее «растягивающее» действие на дыхательные пути, и их сопротивление уменьшается. Применение ПДКВ (PEEP) способствует увеличению объема легких и, следовательно, снижению сопротивления дыхательных путей.

Сопротивление дыхательных путей в норме составляет:

У взрослых — 3-10 мм вод.ст./л/с;

У детей — 15-20 мм вод.ст./л/с;

У младенцев до 1 года — 20-30 мм вод.ст./л/с;

У новорожденных — 30-50 мм вод.ст./л/с.


На выдохе сопротивление дыхательных путей на 2-4 мм вод.ст./л/с больше, чем на вдохе. Это связано с пассивным характером выдоха, когда состояние стенки воздухоносных путей в большей мере влияет на газоток, чем при активном вдохе. Поэтому для полноценного выдоха требуется в 2-3 раза больше времени, чем для вдоха. В норме соотношение времени вдох/выдох (I:E) составляет для взрослых около 1: 1,5-2. Полноценность выдоха у больного во время ИВЛ можно оценить при помощи мониторинга экспираторной временной константы.


Работа дыхания


Работа дыхания совершается преимущественно инспираторными мышцами во время вдоха; выдох почти всегда пассивен. В то же время в случае, например, острого бронхоспазма или отека слизистой оболочки дыхательных путей выдох также становится активным, что значительно увеличивает общую работу внешней вентиляции.


Во время вдоха работа дыхания, в основном, тратится на преодоление эластического сопротивления легочной ткани и резистивного сопротивления дыхательных путей, при этом около 50 % затраченной энергии накапливается в упругих структурах легких. Во время выдоха эта накопленная потенциальная энергия высвобождается, что позволяет преодолевать экспираторное сопротивление дыхательных путей.

Увеличение сопротивления вдоху или выдоху компенсируется дополнительной работой дыхательных мышц. Работа дыхания возрастает при снижении растяжимости легких (рестриктивная патология), росте сопротивления дыхательных путей (обструктивная патология), тахипноэ (за счет вентиляции мертвого пространства).


На работу дыхательной мускулатуры в норме тратится только 2-3% от всего потребляемого организмом кислорода. Это, так называемая, «стоимость дыхания». При физической работе стоимость дыхания может достигать 10-15%. А при патологии (особенно рестриктивной) на работу дыхательных мышц может расходоваться более 30-40% от всего поглощаемого организмом кислорода. При тяжёлой диффузионной дыхательной недостаточности стоимость дыхания возрастает до 90%. С какого-то момента весь дополнительный кислород, получаемый за счет увеличения вентиляции, идет на покрытие соответствующего прироста работы дыхательных мышц. Вот почему на определенном этапе существенное увеличение работы дыхания является прямым показанием к началу ИВЛ, при которой стоимость дыхания уменьшается практически до 0.


Работа дыхания, которая требуется для преодоления эластического сопротивления (податливости легких), возрастает по мере увеличения дыхательного объема. Работа, необходимая для преодоления резистивного сопротивления дыхательных путей, возрастает при увеличении частоты дыхания. Пациент стремится уменьшить работу дыхания, меняя частоту дыхания и дыхательный объем в зависимости от преобладающей патологии. Для каждой ситуации существуют оптимальные частота дыхания и дыхательный объем, при которых работа дыхания минимальна. Так, для больных со сниженной растяжимостью, с точки зрения минимизации работы дыхания, подходит более частое и поверхностное дыхание (малоподатливые легкие трудно поддаются расправлению). С другой стороны, при увеличенном сопротивлении дыхательных путей оптимально глубокое и медленное дыхание. Это понятно: увеличение дыхательного объема позволяет «растянуть», расширить бронхи, уменьшить их сопротивление газотоку; с этой же целью больные с обструктивной патологией во время выдоха сжимают губы, создавая собственное «ПДКВ» (PEEP). Медленное и редкое дыхание способствует удлинению выдоха, что важно для более полного удаления выдыхаемой газовой смеси в условиях повышенного экспираторного сопротивления дыхательных путей.


Регуляция дыхания

Процесс дыхания регулируется центральной и периферической нервной системой. В ретикулярной формации головного мозга находится дыхательный центр, состоящий из центров вдоха, выдоха и пневмотаксиса.


Центральные хеморецепторы расположены в продолговатом мозге и возбуждаются при повышении концентрации Н+ и РСО 2 в спинномозговой жидкости. В норме рН последней составляет 7,32, РСО 2 - 50 мм.рт.ст., а содержание НСО 3 - 24,5 ммоль/л. Даже небольшое снижение рН и рост РСО 2 увеличивают вентиляцию легких. Эти рецепторы реагируют на гиперкапнию и ацидоз медленнее, чем периферические, так как требуется дополнительное время на измерение величины СО 2 , Н + и НСО 3 из-за преодоления гематоэнцефалического барьера. Сокращения дыхательных мышц контролирует центральный дыхательный механизм, состоящий из группы клеток продолговатого мозга, моста, а также пневмотаксических центров. Они тонизируют дыхательный центр и по импульсации из механорецепторов определяют порог возбуждения, при котором прекращается вдох. Пневмотаксические клетки также переключают вдох на выдох.


Периферические хеморецепторы, расположенные на внутренних оболочках сонного синуса, дуги аорты, левого предсердия, контролируют гуморальные параметры (РО 2 , РСО 2 в артериальной крови и спинномозговой жидкости) и немедленно реагируют на изменения внутренней среды организма, меняя режим самостоятельного дыхания и, таким образом, корригируя рН, РО 2 и РСО 2 в артериальной крови и спинномозговой жидкости. Импульсы из хеморецепторов регулируют объем вентиляции, необходимый для поддержания определенного уровня метаболизма. В оптимизации режима вентиляции, т.е. установлении частоты и глубины дыхания, длительности вдоха и выдоха, силы сокращения дыхательных мышц при данном уровне вентиляции, участвуют и механорецепторы. Вентиляция легких определяется уровнем метаболизма, воздействием продуктов обмена веществ и О2 на хеморецепторы, которые трансформируют их в афферентную импульсацию нервных структур центрального дыхательного механизма. Основная функция артериальных хеморецепторов - немедленная коррекция дыхания в ответ на изменения газового состава крови.


Периферические механорецепторы, локализующиеся в стенках альвеол, межреберных мышцах и диафрагме, реагируют на растяжение структур, в которых они находятся, на информацию о механических явлениях. Главную роль играют механорецепторы легких. Вдыхаемый воздух поступает по ВП к альвеолам и участвует в газообмене на уровне альвеолярно-капиллярной мембраны. По мере растяжения стенок альвеол во время вдоха механорецепторы возбуждаются и посылают афферентный сигнал в дыхательный центр, который тормозит вдох (рефлекс Геринга-Брейера).


При обычном дыхании межреберно-диафрагмальные механорецепторы не возбуждаются и имеют вспомогательное значение.

Система регуляции завершается нейронами, интегрирующими импульсы, которые поступают к ним от хеморецепторов, и посылающими импульсы возбуждения к дыхательным мотонейронам. Клетки бульбарного дыхательного центра посылают как возбуждающие, так и тормозящие импульсы к дыхательным мышцам. Координированное возбуждение респираторных мотонейронов приводит к синхронному сокращению дыхательных мышц.

Дыхательные движения, создающие воздушный поток, происходят благодаря согласованной работе всех дыхательных мышц. Нервные клетки двигательных

Нейронов дыхательных мышц расположены в передних рогах серого вещества спинного мозга (шейные и грудные сегменты).


У человека в регуляции дыхания принимает участие и кора большого мозга в пределах, допускаемых хеморецепторной регуляцией дыхания. Так, например, волевая задержка дыхания ограничена временем, в течение которого РаО 2 в спинномозговой жидкости повышается до уровней, возбуждающих артериальные и медуллярные рецепторы.


Биомеханика дыхания


Вентиляция легких происходит за счет периодических изменений работыдыхательных мышц, объема грудной полости и легких. Основными мышцами вдоха являются диафрагма и наружные межреберные мышцы. Во время их сокращения происходят уплощение купола диафрагмы и приподнятие ребер кверху, в результате объем грудной клетки увеличивается, растет отрицательное внутриплевральное давление (Ppl). Перед началом вдоха (в конце выдоха) Ppl приблизительно составляет минус 3-5 см вод.ст. Альвеолярное давление (Palv) принимается за 0 (т. е. равно атмосферному), оно же отражает давление в дыхательных путях и коррелирует с внутригрудным давлением.


Градиент между альвеолярным и внутриплевральным давлением называется транспульмонарным давлением (Ptp). В конце выдоха оно составляет 3-5 см вод.ст. Во время спонтанного вдоха рост отрицательного Ppl (до минус 6-10 см вод.ст.) вызывает снижение давления в альвеолах и дыхательных путях ниже атмосферного. В альвеолах давление снижается до минус 3-5 см вод.ст. За счёт разницы давлений воздух поступает (засасывается) из внешней среды в легкие. Грудная клетка и диафрагма действуют как поршневой насос, втягивающий воздух в легкие. Такое «присасывающее» действие грудной клетки важно не только для вентиляции, но и для кровообращения. Во время спонтанного вдоха происходят дополнительное «присасывание» крови к сердцу (поддержание преднагрузки) и активизация легочного кровотока из правого желудочка по системе легочной артерии. В конце вдоха, когда движение газа прекращается, альвеолярное давление возвращается к нулю, но внутриплевральное давление остается сниженным до минус 6-10 см вод.ст.

Выдох в норме является процессом пассивным. После расслабления дыхательных мышц силы эластической тяги грудной клетки и легких вызывают удаление (выдавливание) газа из легких и восстановление первоначального объема легких. В случае нарушения проходимости трахеобронхиального дерева (воспалительный секрет, отек слизистой оболочки, бронхоспазм) процесс выдоха затруднен, и в акте дыхания начинают принимать участие также мышцы выдоха (внутренние межреберные мышцы, грудные мышцы, мышцы брюшного пресса и т. д.). При истощении экспираторных мышц процесс выдоха еще более затрудняется, происходит задержка выдыхаемой смеси и динамическое перераздувание легких.


Недыхательные функции легких

Функции легких не ограничиваются диффузией газов. В них содержится 50% всех эндотелиальных клеток организма, которые выстилают капиллярную поверхность мембраны и участвуют в метаболизме и инактивации биологически активных веществ, проходящих через легкие.


1. Легкие контролируют общую гемодинамику путем различного заполнения собственного сосудистого русла и влияния на биологически активные вещества, регулирующие сосудистый тонус (серотонин, гистамин, брадикинин, катехоламины), превращением ангиотензина I в ангиотензин II, участием в метаболизме простагландинов.


2. Легкие регулируют свертывание крови, секретируя простациклин - ингибитор агрегации тромбоцитов, и удаляя из кровотока тромбопластин, фибрин и продукты его деградации. В результате этого оттекающая от легких кровь имеет более высокую фибринолитическую активность.


3. Легкие участвуют в белковом, углеводном и жировом обмене, синтезируя фосфолипиды (фосфатидилхолин и фосфатидилглицерол - основные компоненты сурфактанта).

4. Легкие продуцируют и элиминируют тепло, поддерживая энергетический баланс организма.


5. Легкие очищают кровь от механических примесей. Агрегаты клеток, микротромбы, бактерии, пузырьки воздуха, капли жира задерживаются легкими и подвергаются деструкции и метаболизму.


Типы вентиляции и виды нарушений вентиляции


Разработана физиологически четкая классификация типов вентиляции, в основу которой положены парциальные давления газов в альвеолах. В соответствии с этой классификацией выделяются следующие типы вентиляции:


1.Нормовентиляция - нормальная вентиляция, при которой парциальное давление СО2 в альвеолах поддерживается на уровне около 40 мм.рт.ст.


2.Гипервентиляция - усиленная вентиляция, превышающаяметаболические потребности организма (РаСО2<40 мм.рт.ст.).


3.Гиповентиляция - сниженная вентиляция по сравнению с метаболическими потребностями организма (РаСО2>40 мм.рт.ст.).


4. Повышенная вентиляция - любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя, независимо от парциального давления газов в альвеолах (например, при мышечной работе).

5.Эупноэ - нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.


6.Гиперпноэ - увеличение глубины дыхания независимо от того, повышена ли при этом частота дыхательных движений или нет.


7.Тахипноэ - увеличение частоты дыхания.


8.Брадипноэ - снижение частоты дыхания.


9.Апноэ - остановка дыхания, обусловленная, главным образом, отсутствием физиологической стимуляции дыхательного центра (уменьшение напряжения СО2, в артериальной крови).


10.Диспноэ (одышка) - неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания.


11.Ортопноэ - выраженная одышка, связанная с застоем крови в легочных капиллярах в результате недостаточности левого сердца. В горизонтальном положении это состояние усугубляется, и поэтому лежать таким больным тяжело.


12.Асфиксия - остановка или угнетение дыхания, связанные, главным образом, с параличом дыхательных центров или закрытием дыхательных путей. Газообмен при этом резко нарушен (наблюдается гипоксия и гиперкапния).

В целях диагностики целесообразно различать два типа нарушений вентиляции - рестриктивный и обструктивный.


К рестриктивному типу нарушений вентиляции относятся все патологические состояния, при которых снижаются дыхательная экскурсия и способность легких расправляться, т.е. уменьшается их растяжимость. Такие нарушения наблюдаются, например, при поражениях легочной паренхимы (пневмонии, отёк лёгких, фиброз лёгких) или при плевральных спайках.


Обструктивный тип нарушений вентиляции обусловлен сужением воздухоносных путей, т.е. повышением их аэродинамического сопротивления. Подобные состояния встречаются, например, при накоплении в дыхательных путях слизи, набухании их слизистой оболочки или спазме бронхиальных мышц (аллергический бронхиолоспазм, бронхиальная астма, астмоидный бронхит и т.д.). У таких больных сопротивление вдоху и выдоху повышено, и поэтому со временем воздушность легких и ФОЕ у них увеличиваются. Патологическое состояние, характеризующееся чрезмерным уменьшением числа эластических волокон(исчезновением альвеолярных перегородок, объединением капиллярной сети), называется эмфиземой легких.

Комплаенс (compliance) - это показатель растяжимости, податливости легких - характеризует степень изменения объема при изменении эластического давления на определенную величину. Эта эластичность при введении единицы объема - в перерыве тока воздуха - может быть выражена давлением в плевральной полости = AV/AP = мл/см водяного столба. Из понятия комплаенса вытекает, что он является респираторно-механический фактором, измеряемым в паузу тока воздуха, т. е. его определение проводится различными объемами дыхания в конце вдоха и выдоха, и в таких условиях можно говорить о величине т. н. статического комплаенса. На практике это, однако, главным образом у детей, или не может или только с трудом может быть осуществлено, поэтому мы проводим исследования во время спокойного дыхания, и тогда мы говорим о т. н. динамическом комплаенсе. Естественно, и в таких случаях эти данные мы измеряем на кривых во время моментальных перерывов тока воздуха, т. е. при переходе вдоха и выдоха (V = 0). Величина комплаенса в детском возрасте растет параллельно с развитием ребенка, растет эластичность легких, и в этом отношении наиболее тесная связь может быть выявлена с длиной тела.

При бронхиальной астме комплаенс в свободном от приступа состоянии обычно находится вблизи нормальной нижней границы. Следует, однако, отметить, что эта уменьшенная цифра динамического комплаенса отражает не только меньшую эластичность, на нее влияют и другие факторы, как расстройство распределения вдыхаемого воздуха и асинхронность дыхания.

Сопротивление (resistance): составное понятие дыхательной механики; полное респираторное сопротивление, которое, по сути дела, включает в себя сопротивление дыхательных путей, вызванное их просветом (RAW) торакальное сопротивление (RT), а также сопротивление легких и тканей (RLT).

При бронхиальной астме увеличивается полное легочное (транспульмональное) сопротивление (Rp), главным образом в результате повышения сопротивления в дыхательных путях (Raw). Первое может быть определено при помощи техники определения давления в пищеводе, второе - плетизмографией тела. Повышение транспульмонального сопротивления может быть значительным; при спонтанном или провоцированном астматическом приступе наблюдается даже повышение нормальных величин на несколько сот процентов.

И нормальная величина сопротивления находится в теснейшей корреляции с длиной тела, у детей с возрастом уменьшается, в пожилом возрасте опять увеличивается.

Вентиляция и перфузия

Давно известный закон физиологии дыхания гласит, что только часть общей вентиляции, т. н. альвеолярная вентиляция участвует в газовом обмене. Из разницы этих двух величин получается вентиляция мертвого пространства, под которым подразумевается, в первую очередь, вентиляция анатомических объемов дыхательных путей, не участвующих в газообмене. Однако в модель легких как гомогенного органа газообмена все труднее было встраивать те данные, которые указывали на различные расстройства содержания газов в крови и газообмена, по сути дела, при неизменных условиях диффузии.

В настоящее время уже хорошо известно то обстоятельство, что распределение воздуха в легких и при нормальных условиях не вполне равномерно. Подобное неравенство может быть выявлено также и при легочной перфузии. Для беспрепятственного течения газообмена недостаточна приблизительная равномерность альвеолярной вентиляции и перфузии, а основной его предпосылкой является соответствующее соотношение этих двух факторов.

И при нормальных условиях соотношение этих факторов в легких неравномерно. В области верхушек легких вентиляция - сравнительно большая величина: величина коэффициента больше единицы, в то время как ближе к основаниям легких из-за гидростатических факторов на передний план выступает сравнительная величина перфузии (величина коэффициента значительно меньше единицы). В патологических условиях соотношение может быть патологическим, а по отношению к легким в целом и в пределах этого имеются еще более выраженные региональные сдвиги.

На основании совместного исследования вентиляции и перфузии можно говорить в основном о двух патологических отклонениях, протекающих в противоположных направлениях: а) преобладание вентиляции по сравнению с кровообращением, т. е. увеличение альвеолярного мертвого пространства, а также преобладание перфузии в сравнительно плохо вентилируемых альвеолах, с другой стороны, б)здесь действует шунт, повышается венозное смешивание. Эти области обычно называют slow space.

Для возникновения неравномерной вентиляции при бронхиальной астме имеются многие причины. Повышение сопротивления дыхательных путей обычно не является одинаковым; отек слизистой оболочки, и главным образом слизистые пробки, в причудливом распределении закрывающие отдельные дыхательные пути, приводят к неравенству не только распределения воздуха, но и перфузионного соотношения.

Помимо обструктивных факторов неравномерности вентиляции способствует понижение комплаенса, который также не является равномерным.

Значительная часть состояний, сопряженных с артериальной гипоксемией, в которых диффузия не понижена в существенной мере, вызвана расстройством распределения вентиляции и перфузии. Астматические расстройства дыхания входят в эту группу.

Газообмен в легких

Диффузионная емкость легких . Диффузионная емкость определяет способность прохождения газа из альвеол в эритроциты в легочных капиллярах. На цифровые величины диффузионной емкости влияют методические условия. Наиболее распространенная методика определения диффузионной емкости по СО определяет количество СО как единицу перепада давления между альвеолами и эритроцитами (мл/мин/мм рт. ст.). В диффузионной емкости существуют большие индивидуальные различия (10-30%). Погрешность воспроизводимости метода составляет около +8%.

При бронхиальной астме Пекора в 1966 г. нашел у детей нормальные величины даже при т. н. упорной астме. При пересчете этих данных на мембранный компонент в этой группе тяжелой астмы были обнаружены более значительные отклонения, но при астме средней тяжести и эта величина была нормальной. Повышение объясняют увеличением мембранной поверхности за счет повышения TLC.

Роль диффузионной емкости при астматическом расстройстве дыхания, таким образом, менее важна. Гипоксия, наблюдающаяся при тяжелых состояниях, также обусловлена в основном неравномерным распределением воздуха и неравенством вентиляции и перфузии.

Газы крови и кислотно-щелочное равновесие

Эффективность внешнего дыхания - вентиляции - отражается в газовом обмене, в котором, однако, помимо вентиляции важную роль играет и легочная перфузия. В более широком смысле содержание газов в крови связано и с состоянием кислотно-щелочного равновесия всего организма и, следовательно, с обменом веществ.

Известно, что многочисленные параметры вентиляции (альвеолярная вентиляция, мертвое пространство, соотношение VD/VT, диффузионная емкость, определение RQ, легочное кровообращение, шунт справа налево) могут быть определены только на основании знания концентрации газов в крови.

При определении вентиляционного статуса центральное место занимает артериальная кровь, так как здесь суммируется слагающееся из многих факторов действие дыхания.

Газы крови при физиологических условиях находятся в постоянной концентрации со сравнительно небольшими колебаниями. Здесь, однако, наблюдается корреляция не с размерами тела, а в определенной степени с возрастом.

При лечении астматических расстройств дыхания на газы крови стали обращать внимание сравнительно недавно, они стали изучаться значительно позже, чем статические и динамические объемы.

Методика диагностики

Необходимо отметить, что эта статья может содержать лишь схематическое изложение методов, и из большого числа методик, разработанных для исследования дыхательной функции, мы остановимся только на тех, которые применяются в диагностике бронхиальной астмы. Что касается технических деталей, мы ссылаемся на соответствующие монографии.

Непосредственное определение объемов . Спирометрия . Это наиболее давно применяемый метод определения объемов и емкостей. При помощи спирометров возможно непосредственное измерение объемов. В зависимости от их конструкции различаются т. н. влажные и сухие типы. Первыми могут быть т. н. колпачные спирометры (они имеют цилиндрическую или четырехугольную форму). Конструкторы сухих спирометров руководствовались целью исключить проблемы, возникающие при движении воды, а также бактериальную инфицированность и коррозию аппарата. Наиболее известным аппаратом сухого типа является спирометр Веджа. Подобное стремление привело к созданию спирометров системы "bag in bох", при котором в сосуде с твердыми стенками находится эластичный баллон, и при помощи клапана можно отдельно измерять вдыхаемый и выдыхаемый воздух. К группе сухих аппаратов относятся и газометры.

Из перечисленных аппаратов наиболее точными являются современные колпачные спирометры. Регистрация изменений объема осуществляется при помощи цилиндра, вращаемого с различной скоростью. При помощи потенциометра, включенного между колоколом, противовесом и шестереночной передачей, возможна также и электрическая регистрация.

Помимо статических объемов этими аппаратами может определяться и вентиляция.

Для проведения оцениваемых измерений требуется соответствующий навык. Это особенно важно при исследовании детей. При определении VC за основу берется наибольшая величина. Измерение максимальной респираторной емкости представляет нагрузку для пациента и в детском возрасте не применяется.

Косвенное определение объемов . Определение объема воздуха, не выдыхаемого даже при максимальном выдохе (RV), и емкости FRC возможно только непрямым путем. Это определение также проводится при помощи спирометрии техникой разведения газа.

Известны открытый и закрытый методы; для исследования детей более пригодным является последний. Определение при открытой системе проводится анализом азота, при более часто применяемой закрытой системе используется гелий.

FRC является важным параметром при бронхиальной астме, ведь он даже при бессимптомном состоянии может быть больше, чем в норме. Точность определения ограничивается при тяжелом расстройстве распределения, вследствие чего равновесие наступает лишь через длительное время (больше 7 минут). Кроме того, из принципа определения вытекает, что этим способом нельзя определить объем т. н. trapped air - воздуха, закрытого от распределения гелия. Измерение дает неточные результаты и в том случае, если во время определения дыхание не является равномерным. С другой стороны, весьма выгодной методической предпосылкой является то, что при измерении ребенку не приходится проводить утомляющего его упражнения. Повторение исследования является необходимым.

Страница 2 - 2 из 5

В нормальных физиологических условиях глубина вдоха может быть ограничена только физическими свойствами легочной ткани и грудной клетки. Сопротивление раздуванию легких, которое возникает при поступлении в них воздуха, обусловлено растяжимостью их соединительной ткани и сопротивлением дыхательных путей потоку воздуха. Мерой эластических свойств легочной ткани является растяжимость легких, которая характеризует степень увеличения объема легких в зависимости от степени уменьшения внутриплеврального давления:

где С - растяжимость (англ. - compliance), dV - изменение легочного объема (мл), а dР - изменение внутриплеврального давления (см водн. ст.). Растяжимость характеризует количественно степень изменения объема легких у человека в зависимости от степени изменения при вдохе внутриплеврального давления. Грудная клетка также обладает эластическими свойствами, поэтому растяжимость тканей легких и тканей грудной клетки обусловливает эластические свойства всего аппарата внешнего дыхания человека.

Рис. 10.6. Кривая растяжимости (комплайенса) легких . Кривые справа показывают изменение дыхательного объема легких и общей емкости легких, возникающие при изменениях внутриплеврального давления без учета влияния тканей грудной клетки. Легкие полностью не спадаются, если внутриплевральное давление становится равным нулю (точка 1). Кривые комплайенса совпадают в точке 2 при большом объеме в легких, когда легочная ткань достигает предела эластического растяжения. Вд - внутриплевральное давление. Слева - схема регистрации изменений внугриплеврального давления и дыхательного объема легких.

На рис. 10.6 показано изменение легочного объема , которое возникает при изменениях внутриплеврального давления. Восходящая и нисходящая линии характеризуют раздувание и спадение легких соответственно. Фрагмент рис. 10.6 слева демонстрирует, каким образом могут быть измерены значения легочного объема и внутриплеврального давления, вынесенные на график. Объем легких не уменьшается до нуля, когда величина внутриплеврального давления становится равной нулю. Раздувание легких с уровня их минимального объема требует усилия для того, чтобы раскрыть спавшиеся стенки альвеол в силу значительного поверхностного натяжения жидкости, покрывающей как их поверхность, так и поверхность дыхательных путей. Поэтому кривые, полученные при раздувании и спадении легких, не совпадают друг с другом, и их нелинейное изменение называется гистерезисом .

Легкие при спокойном дыхании никогда не спадаются полностью, поэтому кривая спадения описывает изменения легочного объема при изменении величины внутриплеврального давления в диапазоне от -2 см. водн. ст. до -10 см водн. ст. В норме легкие человека имеют высокую растяжимость (200 мл/см водн. ст.). Эластичность легочной ткани обусловлена свойствами соединительных волокон легочной ткани. С возрастом эти волокна, как правило, снижают тонус, что сопровождается увеличением растяжимости и уменьшением эластической тяги легких. При повреждении легочной ткани или при избыточном развитии в ней соединительной ткани (фиброз) легкие становятся плохо растяжимыми, величина их растяжимости снижается, что затрудняет выполнение вдоха и требует значительно большего усилия дыхательных мышц, чем в норме.


Легочная растяжимость обусловлена не только эластичностью легочной ткани, но и поверхностным натяжением слоя жидкости, покрывающей альвеолы. По сравнению с эластической тягой легких, влияние на величину легочной растяжимости во время дыхания фактора поверхностного натяжения слоя жидкости, покрывающей альвеолы, имеет более сложную природу.

Тонкий слой жидкости покрывает поверхность альвеол легких . Переходная граница между воздушной средой и жидкостью имеет поверхностное натяжение , которое формируется межмолекулярными силами и которое будет уменьшать площадь покрываемой молекулами поверхности. Однако миллионы альвеол легких, покрытых мономолекулярным слоем жидкости, не спадаются, поскольку эта жидкость содержит субстанции, которые в целом называются сурфактантом (поверхностно активный агент). Поверхностно активные агенты обладают свойством снижать поверхностное натяжение слоя жидкости в альвеолах легких на границе фаз воздух-жидкость, благодаря которому легкие становятся легко растяжимыми.

Рис. 10.7. Приложение закона Лапласа к изменению поверхностного натяжения слоя жидкости, покрывающего поверхность альвеол . Изменение радиуса альвеол изменяет в прямой зависимости величину поверхностного натяжения в альвеолах (Т). Давление (Р) внутри альвеол также варьирует при изменении их радиуса: уменьшается при вдохе и увеличивается при выдохе.

Альвеолярный эпителий состоит из плотно контактирующих между собой альвеолоцитов (пневмоцитов ) I и II типа и покрыт мономолекулярным слоем сурфактанта , состоящего из фосфолипидов, белков и полисахаридов (глицерофосфолипиды 80 %, глицерол 10 %, белки 10 %). Синтез сурфактанта осуществляется альвеолоцитами II типа из компонентов плазмы крови. Основным компонентом сурфактанта является дипальмитоилфосфатидилхолин (более 50 % фосфолипидов сурфактанта), который адсорбируется на границе фаз жидкость-воздух с помощью белков сурфактанта SP-B и SP-C. Эти белки и глицерофосфолипиды уменьшают поверхностное натяжение слоя жидкости в миллионах альвеол и обеспечивают легочной ткани свойство высокой растяжимости. Поверхностное натяжение слоя жидкости, покрывающей альвеолы, изменяется в прямой зависимости от их радиуса (рис. 10.7). В легких сурфактант изменяет степень поверхностного натяжения поверхностного слоя жидкости в альвеолах при изменении их площади. Это обусловлено тем, что во время дыхательных движений количество сурфактанта в альвеолах остается постоянным. Поэтому при растяжении альвеол во время вдоха слой сурфактанта становится тоньше, что вызывает снижение его действия на поверхностное натяжение в альвеолах. При уменьшении объема альвеол во время выдоха молекулы сурфактанта начинают более плотно прилегать друг к другу и, увеличивая поверхностное давление, снижают поверхностное натяжение на границе фаз воздух-жидкость. Это препятствует спадению (коллапсу) альвеол во время экспирации, независимо от ее глубины. Сурфактант легких влияет на поверхностное натяжение слоя жидкости в альвеолах в зависимости не только от ее площади, но и от направления, в котором происходит изменение площади поверхностного слоя жидкости в альвеолах. Этот эффект сурфактанта называется гистерезисом (рис. 10.8).

Физиологический смысл эффекта заключается в следующем. При вдохе по мере увеличения объема легких под влиянием сурфактанта увеличивается натяжение поверхностного слоя жидкости в альвеолах, что препятствует растяжению легочной ткани и ограничивает глубину инспирации. Напротив, при выдохе поверхностное натяжение жидкости в альвеолах под влиянием сурфактанта уменьшается, но не исчезает полностью. Поэтому даже при самом глубоком выдохе в легких не происходит спадения, т. е. коллапса альвеол.

Рис. 10.8. Эффект поверхностного натяжения слоя жидкости на изменение объема легких в зависимости от внутриплеврального давления при раздувании легких солевым раствором и воздухом. Когда объем легких увеличивается за счет их наполнения солевым раствором, то в них отсутствуют поверхностное натяжение и феномен гистерезиса. Относительно интактных легких - площадь петли гистерезиса свидетельствует об увеличении поверхностного натяжения слоя жидкости в альвеолах при вдохе и снижении этой величины при выдохе.

В составе сурфактанта имеются белки типа SP-A и SP-D, благодаря которым сурфактант участвуют в местных иммунных реакциях, опосредуя фагоцитоз , поскольку на мембранах альвеолоцитов II типа и макрофагов имеются рецепторы SP-A. Бактериостатическая активность сурфактанта проявляется в том, что это вещество опсонизирует бактерии, которые затем легче фагоцитируются альвеолярными макрофагами. Кроме того, сурфактант активирует макрофаги и влияет на скорость их миграции в альвеолы из межальвеолярных перегородок. Сурфактант выполняет защитную роль в легких, предотвращая непосредственный контакт альвеолярного эпителия с частицами пыли, агентами инфекционного начала, которые достигают альвеол с вдыхаемым воздухом. Сурфактант способен обволакивать инородные частицы, которые затем транспортируются из респираторной зоны легкого в крупные дыхательные пути и удаляются из них со слизью. Наконец, сурфактант снижает поверхностное натяжение в альвеолах до близких к нулевым величинам и тем самым создает возможность расправления легких при первом вдохе новорожденного.

Растяжимость легких количественно характеризует растяжимость легочной ткани в любой момент изменения их объема в течение фазы вдоха и выдоха. Поэтому растяжимость представляет собой статическую характеристику эластических свойств легочной ткани. Однако во время дыхания возникает сопротивление движению аппарата внешнего дыхания, обусловливающее его динамические характеристики, среди которых наибольшее значение имеет сопротивление потоку воздуха при его движении через дыхательные пути легких.

На движение воздуха из внешней среды через дыхательные пути к альвеолам и в обратном направлении оказывает влияние градиент давления: при этом воздух движется из области высокого давления в область низкого давления. При вдохе давление воздуха в альвеолярном пространстве меньше, чем атмосферное, а при выдохе - наоборот. Сопротивление дыхательных путей потоку воздуха зависит от градиента давления между полостью рта и альвеолярным пространством.

Поток воздуха через дыхательные пути может быть ламинарным , турбулентным и переходным между этими типами. Воздух движется в дыхательных путях, в основном, ламинарным потоком, скорость которого выше в центре этих трубок и меньше вблизи их стенок. При ламинарном потоке воздуха его скорость линейно зависит от градиента давления вдоль дыхательных путей. В местах деления дыхательных путей (бифуркации) ламинарный поток воздуха переходит в турбулентный. При возникновении турбулентного потока в дыхательных путях возникает дыхательный шум, который может выслушиваться в легких с помощью стетоскопа. Сопротивление ламинарному потоку газа в трубе обусловлено ее диаметром. Поэтому, согласно закону Пуа-зейля величина сопротивления дыхательных путей потоку воздуха пропорциональна их диаметру, возведенному в четвертую степень. Поскольку сопротивление дыхательных путей находится в обратной зависимости от их диаметра в четвертой степени, то этот показатель самым существенным образом зависит от изменений диаметра воздухоносных путей, вызванных, например, выделением в них слизи из слизистой оболочки или сужением просвета бронхов. Общий диаметр сечения дыхательных путей возрастает в направлении от трахеи к периферии легкого и становится максимально большим в терминальных дыхательных путях, что вызывает резкое снижение сопротивления потоку воздуха и его скорости в этих отделах легких. Так, линейная скорость потока вдыхаемого воздуха в трахее и главных бронхах равна примерно 100 см/с. На границе воздухопроводящей и переходной зон дыхательных путей линейная скорость воздушного потока составляет около 1 см/с, в дыхательных бронхах она снижается до 0,2 см/с, а в альвеолярных ходах и мешочках - до 0,02 см/с. Столь низкая скорость воздушного потока в альвеолярных ходах и мешочках обусловливает в них незначительное сопротивление движущемуся воздуху и не сопровождается значимыми затратами энергии мышечного сокращения.

Напротив, наибольшее сопротивление дыхательных путей потоку воздуха возникает на уровне сегментарных бронхов в связи с наличием в их слизистой оболочке секреторного эпителия и хорошо развитого гладкомышечного слоя, т. е. факторов, которые в наибольшей степени влияют как на диаметр воздухоносных путей, так и на сопротивление в них потоку воздуха. В преодолении этого сопротивления заключается одна из функций дыхательных мышц.

В легких большинство дыхательных путей представляют собой эластичные трубки, за исключением трахеи и бронхов, стенки которых «укреплены» хрящевой тканью. Бронхиолы имеют высокоэластичные стенки, и диаметр их просвета может изменяться пассивно во время дыхательных движений. В обычных физиологических условиях при вдохе (как спокойном, так и глубоком) растяжение легочной ткани вызывает растяжение стенки мелких дыхательных путей. Согласно закону Пуазейля, незначительное увеличение радиуса дыхательных путей резко снижает в них сопротивление потоку воздуха. Поэтому при вдохе сопротивление дыхательных путей потоку воздуха не оказывает существенного влияния на силу сокращения дыхательных мышц. Напротив, при выдохе, особенно при глубоком и усиленном (форсированном) выдохе, диаметр мелких дыхательных путей уменьшается, что вызывает значительное увеличение сопротивления потоку воздуха в них. Влияние объема легких при выдохе на поток воздуха в дыхательных путях количественно характеризуется зависимостью «поток-объем». В клинической физиологии дыхания оценка этой зависимости является основным критерием типа и степени нарушения функции дыхательных путей.

Рис. 10.9. Давление в дыхательных путях при выдохе . Вертикальными стрелками показаны величины давления, возникающие в дыхательных путях под влиянием комплайенса легких и грудной клетки. Горизонтальными стрелками в области дыхательных путей показано, что давление, оказываемое на стенки дыхательных путей, может увеличивать их просвет при спокойном выдохе (а) либо уменьшать их диаметр при глубоком выдохе (б) в том участке общей площади поперечного сечения мелких дыхательных путей, где сравниваются величины внутриплеврального и альвол и давления в дыхательных путях (эквипотенциальная точка - ЭПТ). Р -давление (см водн. ст.), РА - давление в альвеолах.

Зависимость «поток-объем» следующим образом характеризует влияние большого объема воздуха в легких на экспираторный поток воздуха в дыхательных путях (рис. 10.9). В момент, предшествующий началу выдоха, после глубокой инспирации в дыхательных путях отсутствует поток воздуха, а внутриплевральное давление равно -10 см водн. ст. С началом форсированной экспирации внутриплевральное давление возрастает примерно до +30 см водн. ст. относительно атмосферного давления, вызывая уменьшение радиуса как альвеол, так и мелких дыхательных путей. В этих условиях давление газов внутри альвеол становится выше, чем в плевральной полости, благодаря действию на стенки альвеол эластической тяги легких. В результате поток воздуха выходит из альвеолярного пространства по дыхательным путям во внешнюю среду по градиенту давления, который постепенно уменьшается в дыхательных путях по мере приближения к трахее. Спадению эластичных стенок бронхиол препятствует градиент давления воздуха между дыхательными путями и внутриплевральным давлением. Однако в некоторой точке дыхательных путей (как правило, в области бронхиол) этот градиент давления становится равным нулю (эквипотенциальная точка давления) и стенки дыхательных путей могут частично или полностью спадаться. В этих условиях продвижение воздуха по дыхательным путям может обеспечиваться только за счет увеличения силы сокращения (работы) внутренних межреберных мышц и мышц живота.

Снижение эластической тяги легких , например при эмфиземе легких, вызывает смещение ближе к альвеолярному пространству эквипотенциальной точки давления в дыхательных путях при выдохе, и, таким образом, блокируется выход воздуха непосредственно из альвеол. Дыхательные шумы, которые возникают в легких у больных, обусловлены прохождением воздуха через спавшиеся мелкие дыхательные пути. Увеличение экспираторного усилия у таких пациентов повышает риск спадения мелких дыхательных путей и еще больше затрудняет выдох. При бронхиальной астме у пациентов дыхательные пути уменьшают свой просвет в результате сокращения гладких мышц стенки бронхиол. В этом случае увеличение сопротивления потоку воздуха в мелких дыхательных путях вызывает рост градиента давления вдоль дыхательных путей при вдохе и смещает эквипотенциальную точку ближе к альвеолярному пространству, вызывая коллапс дыхательных путей при выдохе. Усиление сокращения экспираторных мышц в фазу выдоха еще больше затрудняет выдох у пациентов вследствие уменьшения просвета мелких дыхательных путей.

Сокращение дыхательных мышц создает градиент давления по ходу дыхательных путей. При этом преодолевается эластическое сопротивление легких и грудной клетки, а также сопротивление дыхательных путей потоку воздуха. Наряду с этим последние два показателя позволяют измерять работу дыхательных мышц во время дыхательного цикла. Если принять, что величина работы (W) представляет собой произведение силы (F) на путь (х), то получим: W = F х х В дыхательной системе, в которой измеряемыми величинами являются дыхательный объем и внутриплевральное давление, сила сокращения дыхательных мышц приравнивается к развиваемому ими давлению (Р), которое они оказывают на площадь (А). Поэтому, подставляя выражение F = Р х А в формулу работы дыхательных мышц в течение дыхательного цикла, получим: W = Р х А хх. Поскольку величина А, умноженная на путь (х), в дыхательной системе представляет собой аналог дыхательного объема (V), то общая формула работы дыхательных мышц имеет вид: W = Р х V.

Рис. 10.10. Работа дыхательных мышц при спокойном дыхании . Изменения дыхательного объема (вертикальная ось) при вдохе и выдохе сопровождаются изменениями внутри-плеврального давления. При одновременной регистрации этих величин во время дыхательного цикла общая площадь петель дыхательный объем - внутриплевральное давление отражает количественно работу дыхательных мышц. Работа дыхательных мышц при вдохе больше, поскольку она затрачивается на преодоление эластического сопротивления легких. При выдохе работа дыхания минимальная, поскольку совершается за счет энергии эластической тяги легких, т. е. пассивно. Стрелками показаны изменения внутриплев-рального давления в течение фаз дыхательного цикла. Чем больше площадь петли, тем больше работа дыхательных мышц.

Работа дыхательных мышц при спокойном дыхании. При спокойном дыхании объем вдоха достигает максимум 1 л, а инспираторные мышцы совершают минимальную работу (рис. 10.10). Сокращение инспираторных мышц обеспечивает вдох, а выдох осуществляется пассивно за счет эластической тяги легких. В этих условиях сопротивление дыхательных путей при вдохе и выдохе не оказывает лимитирующего влияния на процесс внешнего дыхания. По мере увеличения глубины дыхания дыхательный объем формируется за счет объема функциональной остаточной емкости и резервного объема вдоха, а работа дыхания совершается против существенного нарастания поверхностного натяжения жидкости на поверхности альвеол. Поэтому чем глубже инспирация, тем большую работу совершают инспираторные мышцы. Во время выдоха, когда глубина дыхательных движений осуществляется в пределах объема жизненной емкости легких, объем легких возвращается пассивно к уровню функциональной остаточной емкости за счет эластической тяги легких, а в пределе функциональной остаточной емкости выдох происходит активно в результате сокращения мышц живота, которые при этом совершают работу.

Работа дыхательных мышц при глубоком дыхании. При глубоком дыхании на силу сокращения дыхательных мышц начинает оказывать влияние изменение диаметра дыхательных путей. Глубокий вдох вызывает расширение дыхательных путей и снижение сопротивления в них потоку вдыхаемого воздуха, поэтому работа инспираторных мышц обусловлена только величинами комплайенса легких и тканей грудной клетки. При глубоком выдохе, при котором в вьщыхаемом воздухе оказывается объем воздуха функциональной остаточной емкости, возникает сдавление мелких дыхательных путей высоким градиентом давления между дыхательными путями и внутриплевральным давлением. Существенное увеличение потока газов через дыхательные пути приводит к росту их сопротивления потоку воздуха, которое становится основным фактором, обусловливающим величину работы дыхания. Однако при глубоком дыхании механизмы регуляции диаметра дыхательных путей при участии вегетативной нервной системы способны минимизировать величину работы, которые выполняют дыхательные мышцы. Так, при глубоком дыхании за счет регулирующих влияний вегетативной нервной системы на гладкие мышцы дыхательных путей увеличивается их диаметр. В результате на сокращение дыхательных мышц затрачивается минимальное количество энергии. Например, при астме дыхание у пациентов становится медленным и глубоким, что снижает затраты энергии на преодоление сопротивления дыхательных путей потоку воздуха и уменьшает работу дыхательных мышц.

Данилов А.Ф.
Ветеринарный центр “Зоовет»

Дыхание — совокупность процессов, обеспечивающих потребление кислорода и выделение двуокиси углерода в атмосферу. В основе дыхательной функции лежат тканевые окислительно-восстановительные процессы, обеспечивающие обмен энергии в организме.

Типы дыхания. У животных различают три типа дыхания: реберный (грудной) — характеризуется при вдохе преобладающим сокращением наружных межреберных мышц; диафрагмальный (брюшной) — когда расширение грудной клетки происходит преимущественно за счет сокращения диафрагмы; реберно-брюшной — когда вдох обеспечивается в равной степени межреберными мышцами, диафрагмой и брюшными мышцами. Последний тип дыхания свойственен сельскохозяйственным животным. Изменение типа дыхания, может свидетельствовать о заболевании органов грудной или брюшной полости. Например, при заболевании органов брюшной полости преобладает реберный тип дыхания, так как животное оберегает больные органы.

Регуляция внешнего дыхания

В соответствии с метаболическими потребностями дыхательная система обеспечивает газообмен О2 и СО2 между окружающей средой и организмом. Эту жизненно важную функцию регулирует сеть многочисленных взаимосвязанных нейронов ЦНС, объединяемых в комплексное понятие «дыхательный центр». При воздействии на его структуры нервных и гуморальных стимулов происходит приспособление функции дыхания к меняющимся условиям внешней среды. Структуры, необходимые для возникновения дыхательного ритма, находятся в продолговатом мозге.

Респираторная система животных подразделяется на два больших отдела: Верхние дыхательные пути (нос, пазухи, ротовая полость, гортань).- В них происходит увлажнение, и согревание атмосферного воздуха.

Нижние дыхательные пути, которые в свою очередь подразделяются на две зоны: Проводящую(трахею, бронхи, бронхиолы)- «мёртвое пространство»

Дыхательную (дыхательные бронхиолы, альвеолярные ходы, альвеолярные мешочки, альвеолы)

Лёгочные объёмы

В физиологии дыхания различают несколько динамических лёгочных обьёмов, меняющихся в зависимости от функционального состояния системы внешнего дыхания. Выделяют следующие основные лёгочные объёмы (по русскоязычной и международной номенклатуре).

ДО — дыхательный объём (VT – Tidal Volume): это объём дыхательного газа во время спокойного вдоха и выдоха. У животных описано три способа определения ДО.

  1. 10-18 мл\кг (H. Schebitz)
  2. до 8 кг – вес в кг умножается на 20; массой тела от 8 до 14 кг – вес в кг умножается на 15; массой тела от 14 до 25 кг – вес в кг умножается на 12; массой тела свыше 25 кг – вес в кг умножается на 10. (О.Б. Павлов, О.Т. Прасмыцкий)
  3. V T = 7.69 kg 1.04 , или 8 мл\кг для больших животных, 10 мл\кгдля мелких животных. (Jeff Ko, DVM, MS, DACVA)

МОД — объем воздуха, проходящий через легкие за 1 минуту.

МОД = ДО * ЧДД Примерно равен 150 мл\кг\мин (H. Schebitz)

РОВд – резервный объём вдоха (IRV – Inspiratory Reserve Volume): дополнительный объём, который животное может вдохнуть по окончании спокойного вдоха. Составляет примерно 100-150 % от ДО.

РОВыд – резервный объём выдоха (EVR – Expiratory Reserve Volume): дополнительный объём который животное может выдохнуть после окончания спокойного выдоха. Составляет примерно 100 – 120 % от ДО.

Евд — емкость вдоха (IC – Inspiratory Capacity): объём максимального вдоха после спокойного выдоха. Равен ДО + РОВд (VT + IRV)

ЖЕЛ – жизненная ёмкость лёгких (VC – Vital Capacity) Один из важнейших показателей функции внешней вентиляции; представляет собой объём максимального выдоха (вдоха), после максимального вдоха (выдоха): ЖЕЛ = ДО + РОВыд + РОВд (VC = VT + EVR + IRV)

Снижение этого показателя более чем на 1\3 от нормы говорит о серьёзной функциональной недостаточности системы внешнего дыхания (снижения податливости лёгких, прогрессирование обструктивной патологии,нарушение нейромышечного управления дыханиемс и т.д.).

ОО – остаточный объём (RV – Residual Volume): объём, остающийся в лёгких после максимального выдоха.

ФОЕ – функциональная остаточная ёмкость (FRC – Functional Residual volume): представляет собой объём газа, который остаётся в лёгких после спокойного выдоха.

ФОЕ = РОВыд + ОО (FRC = ERV + RV) Состовляет примерно 300-400 % от ДО.

Косвенно ФОЕ коррелирует с площадью газообмена. ФОЕ уменьшается при: ожирении, снижении тонуса диафрагмы, беременности, рестриктивной патологии лёгких и т.д.

ОЕЛ – общая ёмкость лёгких (TLC – Total Lung Capacity): объём лёгких во время максимального вдоха.

Растяжимость лёгочной ткани (податливость(compliance)) – это мера упругости лёгочной ткани т.е. её податливость. Истинную эластическую податливость лёгких отражает так называемый статический комплайнс (Cst) в норме она равна 50 мл\см.вод.ст., и вычисляется по формуле Cst.=Vt\Pplat-PEEP

Сопротивление дыхательных путей (resistance) – сопротивление контура и трахиобронхиального дерева на вдохе. Верхняя граница инспираторного сопротивления – 5 см вод.ст./л∙сек рассчитывается по формулеR= 8 η l\ 3,14r 2 где: η-это вязкость газа, l — длинна трубки(бронхов), r – радиус трубки (бронха) или R I = P D – P platoInsp /Flow, где R I – инспираторное сопротивление, Flow – поток (обычно пиковый поток респиратора), P D — пиковое давление в дыхательных путях, P platoInsp — давление на плато вдоха (в условиях окончания вдоха и остановки потока). Увеличение инспираторного сопротивления свидетельствует об ухудшении проходимости трахео-бронхиального дерева из-за бронхоспазма, отека, скопления мокроты.

Дыхательная недостаточность (ее виды и терминальные состояния при которых она возникает).

— это неспособность легких превратить притекающую к ним венозную кровь в артериальную.

(Зильбер, 1978)

— тяжелое нарушение обмена дыхательных газов.

(M.A.Grippiz, 2001)

Основные механизмы развития недостаточности дыхания заключаются в нарушении процессов вентиляции, перфузии, диффузии, а также их количественного соотношения

Острую дыхательную недостаточность подразделяют по патогенезу на : вентиляционную и паренхиматозную [Ю. Н. Шанин, А. Л. Костюченко, 1975]. К вентиляционной относят дыхательную недостаточность, развившуюся в результате поражения дыхательного центра любой этиологии, нарушении передачи импульсов в нервно-мышечном аппарате, повреждении грудной клетки, легких и т.п. Паренхиматозная форма может быть обусловлена развитием обструкции, рестрикции, констрикции дыхательных путей, нарушениями диффузии газов и кровотока в легких.

По этиологии выделяют 6 видов ОДН:

  • Центрального генеза (ЧМТ, повышение ВЧД и отёк мозга любой этиологии, н\о головного мозга, интоксикации, медикаментозное воздействие на головной мозг и т.д.).
  • Нарушение нейро – мышечной передачи (столбняк, миастении, кахексия, травмы спинного мозга, метаболические расстройства (гипокалий – магнийемия), введение миорелаксантов)).
  • Нарушение целостности дыхательного аппарата (торако – диафрагмальная) (травмы грудной клетки, множественные переломы рёбер, разрыв диафрагмы, высокое стояние диафрагмы(асцит, заворот желудка, ожирение), пневмо-гидро-гемоторакс, болевой синдром при торакальных операциях)).
  • Бронхолегочная
  1. Обструктивная (ларинго-, бронхо-, бронхиолоспазм (астма), инородное тело в дыхательных путях, н\о дыхательных путей, нарушение дренажной функции бронхов и т.д.).
  2. Рестриктивная (полисегментарная пневмония, ОРДС, синдром Мендельсона, отёк лёгких любой этиологии).
  • Перфузионная (ТЭЛА, гиповолемия (кровопотеря, дегидратация))
  • Смешанная

ИВЛ – основные понятия, режимы, особенности использования в клинических ситуациях (ЧМТ, отёк лёгких, травма грудной клетки, пневмоторакс, гемоторакс, шок, поражения спинного мозга, ОРДС, астматический статус, эпистатус, общая анестезия, реанимационные мероприятия.

Основные понятия

Триггер (trigger – запуск) – запуск аппаратного вдоха (инициируется аппаратом (задаётся врачём), пациентом, врачём (вручную)).

Условн. обозначения Ед.измерения

— Ppeak cm.H2O Пиковое давление вдоха
— Ppause cm.H2O Давление паузы вдоха
— Pmean cm.H2O Среднее давление в дыхательных путях
— PEEP cm.H2O Положительное давление конца выдоха (ПДКВ)
— PEEPtot. cm.H2O Общее ПДКВ
— VTi ml Объём вдоха (ДО)
— VTe ml Реальный выдыхаемый объём
— MVe(Ve) L\min Минутныйобъём дыхания (МОД)
— Vexp. L\min Пиковый экспираторный поток (Flow)
— Vinsp. L\min Пиковый инспираторный поток (Flow)
— Freq (f) b\min Частота Принудительного Дыхания
— I: E —- Отношение вдоха к выдоху
— Cs ml\cm H2O cтатическая податливость лёгких (комплайнс)
— Re cm.H2O \L\s сопротивление на выдохе (резистайнс)
— Ri cm.H2O \L\s сопротивление на вдохе (резистайнс)
— ETS ml\s; cm.H2O чувствительность экспираторного триггера
— О2 insp. % концентрация О2 в смеси на вдохе
— ETCO2 % концентрация СО2 конца выдоха

Эти показатели вы можете задавать при проведении МВЛ, либо мониторировать.

В принципе, если это позволяет ваш аппарат ИВЛ, вы можете задать следующие настройки: Ppeak, PEEP, VTi, MVe(Ve), Freq (f), I: E, Vinsp., О2 insp. Остальные параметры ваш аппарат ИВЛ может мониторировать (при условии, если в нём есть необходимые функции).

Показания к искусственной вентиляции лёгких:

  1. Отсутствие самостоятельного дыхания (апноэ).
  2. Остро развившиеся нарушения важных параметров дыхания (ритма, частоты и глубины):
    -полипное (тахипноэ), когда цель дыхания сводится к обеспечению кислородом дыхательных мышц (высокая цена дыхания), если оно не связано с гипертермией, выраженной неустранённой гиповолемией (в последних случаях нужно попытаться устранить эти причины).
    — некоторые (аритмичные) патологические и агональные типы дыхания
  3. Клиническое проявление нарастающей гипоксии и/или гиперкапнии, если они не исчезают после проведения консервативной терапии — адекватного обезболивания, оксигенотерапии, ликвидации опасного для жизни уровня гиповолемии и грубых нарушениях метаболизма — и после проверки проходимости дыхательных путей!
  4. Нарушение защитных рефлексов гортани.

Первые три пункта являются абсолютными показаниями к проведению ИВЛ.

Механический вдох состоит:

  1. Начала вдоха (фаза запуска)
  2. Собственно вдох (фаза доставки дыхательного потока)
  3. Окончание вдоха (фаза переключения с вдоха на выдох)

Классификация основных режимов ИВЛ:

VCV- Volum Control Ventilation — Вентиляция с контролем по Объёму

PCV — Pressure Control Ventilation – Вентиляция с управляемым давлением

IMV – (Intermittent Mandatory Ventilation) – Перемежающаяся (периодическая) принудительная вентиляция

SIMV — (Synchronized Intermittent Mandatory Ventilation) – алгоритм синхронизированной перемежающейся обязательной вентиляции

CMV — (Control Mandatory Ventilation) – IPPV (Intermittent Positive Pressure Ventilation) — режим контролируемой обязательной вентиляции

Assist Control — SIPPV (Synchronized Intermittent Positive Pressure Ventilation) алгоритм контролируемой поддержки

PSV — (Pressure Support Ventilation) – режим вентиляции с поддержкой давлением (аналог Pressure Support)

VAPS — (Volume Assured Pressure Support) — режим гарантированного объема при поддержке давлением

CPAP (Continuous Positive Airway Pressure) – режим постоянного положительного давления в дыхательных путях

BIPAP — (Biphasic Positive Airway Pressure) – режим двухфазного положительного давления в дыхательных путях

HFV – (High Frequency Ventilation) – Высокочастотная ИВЛ

Исскуственная вентиляция лёгких при некоторых клинических состояниях.

ИВЛ при кардиогенном отёке лёгких и Остром Респираторном Дистресс Синдроме

Задачи ИВЛ:

  1. Сохранение функциональной способности относительно «здоровых» непоражённых зон лёгких.
  2. Вовлечение в газообмен спавшихся, но ещё способных к расправлению участков лёгочной ткани
  3. Поддержание потенциально вентилируемых зон лёгких в «открытом» состоянии, предупреждение их экспираторного коллапса (концепция открытых лёгких).
  4. Мониторинг границы положительного влияния ИВЛ на сердечный выброс(СВ).

Параметры ИВЛ: Режим А\С; SIMV, FiO 2 -0,4-0,6, VT- 6-8мл\кг, Отношение I:E-1:2, P peak — не более 35 см.вод.ст.(с тенденцией к снижению), PEEP- 10-15 cм.вод.ст. (при повышение PEEP выше 15 см.вод.ст. контроль СВ!)

ИВЛ при Черепно Мозговой Травме (ЧМТ)

Задачи ИВЛ:

  1. Поддержание достаточного МОД при нарушении центрального контроля
  2. Поддержание нормо или умеренной гипервентиляции (SpO 2 не менее 92-95%)
  3. Поддержание умеренной гипокапнии PaCO 2 – 30-35 мм.рт.ст.

Параметры ИВЛ: режим А\С, FiO 2 -0,4-0,6, VT- 10-12 мл\кг, Отношение I:E – 1:2-2,5, P peak – не более 25-28 см.вод.ст., PEEP- не более 5 см.вод.ст. P mean -не более 10-12 cм.вод.ст.

ИВЛ при травме грудной клетки

Задачи ИВЛ:

  1. Поддержание внешней вентиляции и оксигенации
  2. Профилактика баротравмы как фактора провоцирующего пневмоторакс.
  3. Пневматическая стабилизация грудной клетки,ограничение её излишней подвижности.

Параметры ИВЛ: режим SIMV, FiO 2 -0,4-0,8,VT- не более 10 мл\кг, P peak – не более23-26 см.вод.ст., PEEP- не более 5 см.вод.ст.

ИВЛ при пневмотораксе

Задачи ИВЛ:

  1. Максимально увеличить время выдоха, чтобы обеспечить декомпрессию и выход задержанного газа (Tin до 0,25 — 0,30 сек.) при неизменной частоте.
  2. Максимально уменьшить РЕЕР до 1-2 см. для уменьшения сопротивления на выдохе.
  3. Максимально уменьшить пиковое инспираторное давление и, следовательно, ДО с целью предупреждения больших колебаний давления в дыхательных путях.

ИВЛ при воспалительных процессах или травме брюшной полости

Задачи ИВЛ:

  1. Преодоление повышенного давления в брюшной полости
  2. Разгрузка дыхательных мышц (в частности диафрагмы)
  3. «Раскрытие лёгких»

Параметры ИВЛ: режим SIMV, A\C, FiO 2 -0,4-0,8, P peak – 35-40 см.вод.ст., PEEP-10-15 см.вод.ст.

ИВЛ при обострении астмы

Задачи ИВЛ:

  1. Обеспечение адекватного выдоха
  2. Должны бытьприняты меры по диагностике и компенсации внутреннего PEEP
  3. Повышение давления вдоха для преодоления обструкции дыхательных путей.

Параметры ИВЛ: режим SIMV (с вентиляцией по объёму), FiO 2 -0,6-0,8, P peak – 40-45 см.вод.ст., P pause – до 30 см. вод. ст., PEEP – 0, VT- 12-15 мл\кг, отношение I:E – 1: 2,5-3,5

ИВЛ при гемморагическом, гиповолемическом, септическом шоке

Задачи ИВЛ:

  1. Применение ИВЛ при выраженной гипоксии, обеспечение адекватной вентиляции и SpO 2
  2. По возможности сохранение спонтанного дыхания и применение вспомогательных режимов ИВЛ.
  3. Контроль за отрицательным влиянием ИВЛ на гемодинамику и сердечный выброс.

Параметры ИВЛ: режим SIMV,CPAP,BIPAP, FiO 2 -0,6-0,8, P peak – 13-16 см.вод.ст., VT- 8-10 мл\кг, PEEP- 2-3 см.вод.ст., отношение I:E – 1:1-2.

Список использованной литературы:

  1. H. Schebitz «Оперативная хирургия собак и кошек»
  2. С.В Царенко «Практическийкурс ИВЛ»
  3. О.Е.Сатишур «Механическая вентиляция лёгких»
  4. П.А.Брыгин «Методы и режимы современной искусственной вентиляции лёгких» Nystrom, MD «Вентиляционная поддержка новорожденных»
  5. Е.В.Суслин «Искусственная и вспомогательная вентиляция лёгких».
  6. Б.Д. Зислин «(ВЧ ИВЛ): вчера, сегодня, завтра»
  7. Аверин А.П. «Особенности проведения традиционной искусственной вентиляции легких у новорожденных»
  8. Дж.Эдвард Морган-мл.,Мэгид С. Михаил. «Клиническая анестезиология».
  9. Вингфилд В.Е. «Секреты неотложной ветеринарной помощи: Кошки и собаки».