Анаэробная работоспособность спортсменов (Лимитирующие факторы, тесты и критерии, средства и методы тренировки) Габрысь Томаш. Анаэробные тренировки (тренинг, упражнения)

Анаэробные тренировки (тренинг, упражнения) - это вид физической нагрузки, при которой мышечные движения совершаются за счет энергии полученной в ходе , то есть окисление происходит при отсуствии кислорода. Типичные анаэробные тренировки - силовой тренинг в , армреслинге и т.д. Анаэробные тренировки отличаются нагрузки (постоянная мышечная работа продолжается менее 3-5 минут, после чего требуется отдых). В анаэробных тренировках выделяются - короткий промежуток времени, в течение которого производится высокоинтенсивная работа с большими весами.

Анаэробные тренировки предназначены для повышения взрывной силы и увеличения мышечной массы.

Оценка анаэробной физической работоспособности

Для характеристики скоростно-силовых упражнений используют два основных показателя максимальную анаэробную мощность и максимальную анаэробную емкость.

Таблица 13 - Максимальная анаэробная мощность лиц разного возраста и пола (кг -1 м с -1)

Максимальная анаэробная мощность может поддерживаться только несколько секунд. Работа такой мощности выполняется исключительно за счет энергии анаэробного расщепления мышечных фосфагенов - АТФ и КФ. Поэтому запасы этих веществ и скорость их энергетической утилизации определяют максимальную анаэробную мощность. Короткий спринт и прыжки являются теми упражнениями, результаты которых зависят от максимальной анаэробной мощности. Для оценки максимальной анаэробной мощности часто используют тест Маргария, суть которого состоит во взбегании по ступенькам и измерении времени взбегания (Физиологическое тестирование спортсменов...,1998). Нормативные показатели максимальной анаэробной мощности приведены в таблице 13.

Рисунок 3 Кислородный дефицит и кислородный долг при кратковременной работе субмаксимальной аэробной мощности (Спортивная физиология, 1986)

Для оценки максимальной анаэробной емкости чаще всего используют показатель максимальной величины кислородного долга (МКД), который проявляется после работы предельной мощности (1-3 мин). Это обусловлено тем, что большая часть избыточного количества кислорода, потребляемого после работы, используется для восстановления , КФ и , использованных во время работы (рис. 3).

У неспортсменов МКД составляет: мужчины - 5 л (68 мл кг -1), женщины - 3,1 л (50 мл кг -1).

У спортсменов: мужчины - до 20 л и больше (140 мл-кг -1), женщины -10-12 л (95 мл-кг -1).

МКД состоит из двух компонентов - быстрого и медленного.

Быстрый (алактатный) компонент КД - характеризует фосфагенную часть анаэробной емкости, обеспечивающей выполнение кратковременных упражнений скоростно-силовой направленности (спринт). Ее определяют, рассчитывая величину КД 33 первые 2 мин восстановительного периода. Из этой величины можно выделить фосфагенный компонент КД, вычитая количество кислорода, связанного с миоглобином и находящегося в тканевых жидкостях.

Фосфагенный (АТФ + КФ) КД равен:

КД=КД 2 мин-550 * 0,6 * 5 / масса тела (кг -1)

где КД 2 мин - КД (ккалкг -1 массы -1), измеренный в течение двух минут восстановления после работы предельной мощности; 550 - приблизительная величина КД за 2 мин, используемого для восстановления кислородных запасов миоглобина и тканевых жидкостей; 0,6 - эффективность оплаты алактатного КД; 5 - калорический эквивалент 1 мл кислорода.

Типичная максимальная величина фосфагенного компонента КД = 100 ккал кг -1 или 1,5-2 л 02. В результате тренировок скоростно-силовой направленности этот показатель может увеличиваться в 1,5-2 раза (Мурза, Филиппов, 2001).

Медленная фракция КД связана с анаэробным гликолизом и затрачивается на ликвидацию молочной кислоты в организме путем ее окисления до С02 и Н20 или превращения в гликоген.

Для определения максимальной емкости анаэробного гликолиза можно использовать расчеты образования молочной кислоты в процессе мышечной работы, оценивая энергию, образованную за счет анаэробного гликолиза:

Энергия анаэробного гликолиза (кал-кг -1) = Содержание молочной кислоты в крови (г л -1) 0,76-220,

где содержание молочной кислоты определяется как разница между самой большой ее концентрацией на 4-5 минуте после работы (пик ее содержания в крови) и концентрацией в условиях покоя; 0,76 -- константа, используемая для коррекции уровня молочной кислоты в крови до уровня ее содержания во всех жидкостях; 220 - калорический эквивалент продукции 1 г молочной кислоты.

Максимальная емкость лактатного (гликолитического) компонента КД составляет:

  • у нетренированных мужчин = 200 кал кг -1 (13 ммоль-л -1);
  • у ведущих спортсменов = 400-500 кал-кг -1 (до 26 ммоль-л -1).

Высокая лактатная емкость обусловливает более высокую мощность и большее время ее удержания. Это обеспечивается включением в работу большой мышечной массы (рекрутированием), в том числе быстрых (гликолитического типа) мышечных волокон; развитием механизмов, позволяющих организму переносить более высокие концентрации молочной кислоты (низкие значения pH) за счет увеличения количества соответствующих изоферментов.

Для оценки анаэробной мощности и емкости можно использовать также такие тесты, как Квебекский 10-секундный велоэргометрический тест, а также промежуточные анаэробные тесты (30-секундный велоэргометрический тест Винтгейта, Квебекский 90-секундный велоэргометрический тест, 60-секундный прыжковый тест и др.) (Физиологическое тестирование спортсменов..., 1998). В зависимости от наличия соответствующего оснащения можно использовать один из них, а также непрямые методы оценки анаэробной работоспособности (варианты работы 12.1-12.4).

Определение алактатной анаэробной мощности по тесту Маргария

Оснащение : ступеньки, высота каждой -175 мм, два фотоэлемента с таймером (чувствительность 0,01 с), медицинские весы для взвешивания испытуемых.

Ход работы

Суть одного из вариантов теста Маргария: испытуемый находится на расстоянии 2 м от ступенек и по сигналу бежит с максимальной скоростью через две ступеньки вверх. Регистрирующие устройства находятся на 8-й и 12-й ступеньках.

Расчет проводят по формуле

Р = W * 9,8 * D / Т

где Р - алактатная мощность, Вт; 9,8 - ускорение свободного падения тела, мс -2 ; W- масса тела испытуемого, кг -1 ; D - вертикальная высота между первым и вторым переключающими устройствами, м; Т - время от первого до второго переключающего устройства, с.

Полученные данные сравнивают со значениями для людей нетренированных и ведущих спортсменов разного возраста, используя данные таблицы 13, и делают выводы об анаэробной алактатной мощности испытуемых.

Определение анаэробной возможности организма спортсменов по регистрации времени задержки дыхания

Оснащение : секундомер.

Ход работы

Не всегда есть возможность использовать сложную аппаратуру для определения анаэробных возможностей организма спортсменов прямыми методами. Поэтому была предложена простая и достаточно информативная методика, состоящая в максимальной задержке дыхания на вдохе до работы (в состоянии покоя) и сразу после выполнения работы, направленной на проявление скоростной выносливости. Такой работой может быть «челночный бег» (7 х 50 м).

Для исследования выбирают нескольких студентов разной специализации и разного уровня тренированности. По очереди они делают максимальную задержку дыхания до работы и сразу после работы. Процедура задержки дыхания: перед задержкой дыхания выполняют максимальный вдох и максимальный выдох (для вентиляции легких), затем делают глубокий вдох, поскольку при максимальном вдохе и чрезвычайно растянутых альвеолах будут раздражаться нервные окончания, что вызовет непроизвольное окончание задержки дыхания. После вдоха нос зажимают пальцами.

Время задержки дыхания в состоянии покоя рассматривают как показатель анаэробных возможностей организма, поскольку и время поддержания скоростной выносливости, и время максимальной задержки дыхания определяются устойчивостью организма к условиям недостатка кислорода.

Время задержки дыхания после работы свидетельствует о том, в какой степени во время работы спортсмен может использовать анаэробные возможности.

Чем меньшее время задержки дыхания после работы, тем эффективнее используются анаэробные возможности организма.

Исследования показали, что время задержки дыхания в состоянии покоя у квалифицированных футболистов в среднем составляет 90 с (70-120 с), а время задержки дыхания после работы - 5-7 с.

На основании полученных результатов рассчитывают показатель эффективности реализации анаэробных возможностей организма - коэффициент использования анаэробных возможностей организма (КИАнВ), это отношение времени максимальной задержки дыхания в состоянии покоя ко времени задержки дыхания после работы:

КИАнВ (уел. ед.) =время задержки дыхания в состоянии покоя, с/ время задержки дыхания после работы, с

Полученные результаты вносят в таблицу 14.

Данные, полученные во время обследования всех испытуемых, сравнивают, делают выводы об устойчивости к гипоксии, отражающей анаэробные возможности организма спортсменов. Делают также выводы об эффективности реализации анаэробных возможностей организма испытуемых по показателю КИАнВ.

Таблица 14 - Определение максимального времени задержки дыхания на вдохе и коэффициента использования анаэробных возможностей организма

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

240 руб. | 75 грн. | 3,75 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Автореферат - 240 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Габрысь Томаш. Анаэробная работоспособность спортсменов (Лимитирующие факторы, тесты и критерии, средства и методы тренировки) : Дис. ... д-ра пед. наук: 13.00.04: Москва, 2000 403 c. РГБ ОД, 71:00-13/216-1

ВВЕДЕНИЕ 8

ГЛАВА 1 АНАЭРОБНЫЙ МЕТАБОЛИЗМ И РАБОТОСПОСОБНОСТЬ

СПОРТСМЕНОВ 15

1.1. Анаэробне источники энергии при напряженной мышечной деятельности 19

1.2. Последовательность включения анаэробных источников энергии при мышечной работе 25

1.3. Факторы, лимитирующие анаэробную работоспособность спортсмена. 39

1.4. Тесты и критерии для оценки анаэробной работоспособности спортсменов 51

1.5. Средства и методы тренировки, направленные на развите анаэробной работоспособности спортсмена 67

1.6. Особенности построения тренировки, направленной на развитие анаэробной работоспособности спортсмена 82

1.7. Эргогенические средства, используемые для повышения анаэробной работоспособности спортсменов 88

ГЛАВА 2 МЕТОДЫ И ОРГАНИЗАЦИЯ ИССЛЕДОВАНИЙ 94

2.1. Организация и общий план проведения экспериментальных исследований 94

2.2. Испытуемые 104

2.3. Методы экспериментальных исследований 105

2.3.1. Эргометрические измерения 105

2.3.3. Методы физиологических измерений 108

2.3.3. Методы биохимических измерений в крови и в тканях 110

2.3.4. Расчетные и вычислительные методы 110

2.4. Экспериментальные процедуры 117

ГЛАВА 3 ИСТОРОГРАФИЧЕСКИИ АНАЛИЗ РЕКОРДНЫХ ДОСТИЖЕНИИ В

БЕГЕ НА КОРОТКИЕ ДИСТАНЦИИ И ПЕРСПЕКТЫВЫ

СОВЕРШЕНСТВОВАНИЯ СОВРЕМЕННОЙ СИСТЕМЫ АНАЭРОБНОЙ

ТРЕНИРОВКИ 123

3.1. Предпосылки 123

3.2. Результаты исследования 125

3.2.1. Историографический анализ рекордных достижении в беге на короткие дистанции 125

3.2.2. Эргометрический анализ рекордных достижении в беге на короткие дистанции на основе зависимости "дистанция-время" 145

3.2.3. Эргометрический анализ рекордных достижении в беге на короткие дистанции с использованием зависимости "скорость-время" 150

3.3. Заключение 155

ГЛАВА 4 ДИНАМИКА ПОКАЗАТЕЛЕЙ АЭРОБНОЙ И АНАЭРОБНОЙ

РАБОТОСПОСОБНОСТИ СПОРТСМЕНОВ В УПРАЖНЕНИЯХ РАЗНОЙ

МОЩНОСТИ И ПРЕДЕЛЬНОЙ ПРОДОЛЖИТЕЛЬНОСТИ 156

4.1. Предпосылки.- 156

4.2. Результаты исследований 157

4.2.1. Эргометрический анализ механической производительности при

лабораторных испытаниях в работе на велоэргометре 157

4.2.3. Биоэнергетические критерии анаэробной производительности при беге на различных дистанциях 163

4.2.4. Биоэнергетические критерии анаэробной производительности в

работе на велоэргометре 181

Заключение 200

ГЛАВА 5 ТЕСТЫ И КРИТЕРИИ АНАЭРОБНОЙ РАБОТОСПОСОБНОСТИ

СПОРТСМЕНОВ 203

5.1. Предпосылки 203

5.2. Результаты исследования 204

5.2.1. Тесты и критерии для оценки алактатной анаэробной работоспособности спортсменов 204

5.2.2. Тесты и критерии для оценки гликолитической анаэробной работоспособности 215

5.2.3. Специальные полевые тесты для оценки анаэробной работоспособности 232

5.3. Заключение 239

ГЛАВА 6 БИОЭНЕРГЕТИЧЕСКИЙ ПРОФИЛЬ АНАЭРОБНОЙ

РАБОТОСПОСОБНОСТИ У БЕГУНОВ НА КОРОТКИЕ ДИСТАНЦИИ 240

6.1. Предпосылки 240

6.2. Результаты исследовании 241

6.2.1. Показатели анаэробной работоспособности бегунов на короткие дистанции различного уровня подготовленности и пола 241

6.2.2. Взаимосвязь показателей анаэробной работоспособности с спортивными достижениями в беге на короткие дистанции 273

6.3. Заключение 280

ГЛАВА 7 ЭФФЕКТИВНОСТЬ СРЕДСТВ И МЕТОДОВ ТРЕНИРОВКИ

НАПРАВЛЕННОЙ НА ПОВЫШЕНИЕ АНАЭРОБНОЙ

РАБОТОСПОСОБНОСТИ БЕГУНОВ НА КОРОТКИЕ ДИСТАНЦИИ 282

7.1. Предпосылки 282

7.2. Результаты исследования 283

7.2.1. Определение параметров нагрузки, направленной на повышение

анаэробной работоспособности бегунов на короткие дистанции 283

7.2.2.0ценка срочного тренировочного эффекта повторных и интервальных нагрузок, направленных на развите анаэробной работоспособности бегунов

на короткие дистанции 305

7 3 Заключение 313

ГЛАВА 8 ОПТИМИЗАЦИЯ П^

НА РАЗВИТИЕ АНАЭРОБНОЙ РАБОТОСПОСОБНОСТИ БЕГУНОВ НА

КОРОТКИЕ ДИСТАНЦИИ 316

8.1. Предпосылки 316

8.2. Результаты исследовании 317

8.2.1. Особенности построения тренировки у бегунов на короткие дистанции различной квалификации и специализации 317

8.2.2. Анализ интеркорреляции объемов тренировочных нагрузок разной направленности, применяемых при подготовке высококвалифицированных бегунов на короткие дистанции 327

8.2.3. Установление оптимальных параметров нагрузок, используемых при подготовке спринтеров высокой квалификации 331

8.3. Заключение 340

ГЛАВА 9 КОРЕКЦИЯ И ПОТЕНЦИРОВАНИЕ ТРЕНИРОВОЧНОГО

ЭФФЕКТА УПРАЖНЕНИИ ПРИ ИЗМЕНЕНИИ УСЛОВИЙ ТРЕНИРОВКИ И

ПОД ВЛИЯНИЕМ ПРИМЕНЕНИЯ ЭРГОГЕНИЧЕСКИХ СРЕДСТВ 342

9.1. Предпосылки 342

9.2. Результаты исследовании 342

9.2.1. Эффективность применения специализированной тренировки анаэробного характера в условиях искусственно вызванной гипоксической гипоксии 342

9.2.2. Влияние направленных изменений кислотно-щелочного равновесия в организме на тренировочный эффект различных видов анаэробной интервальной работы 349

9.2.3. Применение препаратов антигипоксического действия для коррекции эффектов интервальной тренировки анаэробного воздействия 352

9.2.4. Потенцирование эффектов анаэробной тренировки под влиянием приема препаратов креатина и аминокислотных смесей 356

9.2.5. Коррекция тренировочного эффекта интервальной анаэробной работы под влиянием приема препаратов полилактата 361

9.3. Заключение 364

ГЛАВА 10 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ 366

10.1. Анаэробная работоспособность: перспективы в спорте высших достижений 366

10.2. Эргометрический анализ рекордных достижении - эффективный инструмент контроля за развитием анаэробной работоспособности спортсмена 369

ВЫВОДЫ 372

СПИСОК ЛИТЕРАТУРЫ 378

Введение к работе

Актуальность исследования. Изменения в сфере энергетического обмена служат основным фактором, определяющим работоспособность спортсменов в разных видах упражнения. Как известно /21, 87, 95, 212, 240, 241, 242, 284, 367/ образование энергии при мышечной деятельности осуществляется за счет метаболичесих процессов трех видов: алактатного анаэробного процесса, связанного с использованием внутримышечных резервов АТФ и КрФ, гликолитического анаэробного процесса, который представляет собой многоступенчатый процесс анаэробного ферментативного распада углеводов приводящего к образованию молочной кислоты в работающих мышцах, и аэробного процесса, связанного с потреблением кислорода и окислительной деградацей пищевых веществ, главным образом, углеводов и жиров.

Традиционно физиологей и биохимией физических упражнений подробно изучались процессы окислительного метаболизма и связанная с этим эргометрическая феноменология - измерениея максимального потребления 02, критической мощности, порога анаэробного обмена. /95, 25, 201, 301/. Лишь в последние время возник выраженный интерес исследователей к изучению изменений работоспособности, связанных с анаэробным обменом в работающих мышцах. Одним из стимулов, возбудившим всеобщий интерес к изучению этой проблемы, послужила работа D.L. Dilla /151/, в которой на основе прямых экспериментальных измерении максимального потребления кислорода у выдающихся бегунов современности, было показано, что за 40 лет развития мировых рекордов в беге с конца 30-х годов и до середины 60-х годов, значение максимального потребления кислорода у ведущих бегунов мира, по сути дела, не изменилось, а существенное улучшение механической производительности в беге, наблюдаемое в это время связанно в основном с улучшением анаэробных возможностей бегунов. Физиологическая эффективность использования энергии, высвобождяемой в метаболических процессах, зависит от трех наиболее важных параметров - мощности, емкости и эффективности преобразования энергии в избранном метаболическом

процессе. Конкретное значение этих параметров для основных метаболических источников пока еще точно не установлено, многочисленные измерения этих параметров на разных контингентах испытуемых в разных типах упражнений дают широкий спектр несовподающих значений. Причины таких широких вариций анаэробной производительности, как правило, связанны с несовершенством используемой измерительной техники и методологии, недостаточной мотивацей испытуемых, наличием существенных генетических предросположении и быстрыми изменениями показателей эффективности анаэробных процессов в различающихся условиях проведения экспериментов. В то же время, как следует из заключения D.L. Dilla /151/, повышение работоспособности в большинстве видов спорта в ближайшие десятилетие будет обусловлено за счет анаэробной работоспособности, вызванном применением более эффективных методов тренировки, а также дополнительных эргогенических средств и успешным использованием изменяющихся биоклиматических условий. С той точки зрения проведенние специальных исследований орентированных на изучение факторов, определяющих анаэробную работоспособность спортсменов, и позволяющих вносить необходимые коррективы в процесс развития этих способностей при подготовке высококвалифицированных спортсменов, представляется вполне актуальным и имеющим важное значение для дальнейшего совершенствования современной теории и практики спорта.

Методологической основой исследования явились труды ведущих специалистов в области теории и методики спортивной тренировки /44, 54, 85, 133, 170, 190/, физиологи и биохими физических упражнений /17, 21, 22, 133, 265/.

Гипотезы исследования. Повышение анаэробной работоспособности спортсменов, наблюдаемое в процессе спортивной подготовки, тесно связано с объемом и характером примененяемых тренировочных нагрузок, а также с характером взаимодействия основных и дополнительных эргогенических средств, используемых на каждом этапе подготовки. Предельный объем физических нагрузок анаэробного воздействия, применяемых в процессе подготовки спортсменов высокой квалификации, зависит от уровня их

максимальной анаэробной способности. Программирование тренировки, направленное на развитие анаэробных качеств, требует строгого учета выше упомянутых факторов и установления оптимальных форм их использования в процессе тренировки.

Предмет исследования. Параметры упражнения, средства и методы тренировки, а также специальные эргогенические средства способствующие повышению анаэробной работоспособности спортсменов.

Объект исследования. Изучение метаболических функции и механической производительности у квалифицированных спортсменов в разных видах анаэробных упражнений.

Цель исследования. Обоснование системы тренировки, контроля и коррекции применяемых тренировочных средств, направленных на совершенствование анаэробной работоспособности спортсменов.

Задачи исследования

1. Изучить изменение механической производительности при выполнени

анаэробных упражнений разной мощности и продолжительности.

2. Исследовать динамику процессов анаэробного метаболизма при выполнении упражнений разной мощности и продолжительности.

3. Установить наиболее репрезентативные тесты и критерии для оценки анаэробной работоспособности спортсменов.

4. Изучить эффективность различных средств и методов тренировки направленных на развитие анаэробных качеств спортсменов.

5. Провести систематизацию упражнений, применяемых для развития анаэробной работоспособности спортсмена.

6. Изучить изменения анаэробной работоспособности при различных построениях тренировочного процесса. Определить возможности оптимизации тренировочного процесса, направленного на совершенствование анаэробной работоспособности спортсмена.

7. Изучать эффективность применения специальных эргогенических средств с целью повышения и коррекции анаэробной работоспасобности спортсмена.

Научная новизна исследования. Установлены основные закономерности изменения максимальной производительности при

выполнении анаэробных упражнении разной мощности и продолжительности. Исследованы изменения в динамике метаболических процессов, связанных с энергетическим обеспечением анаэробных упражнений разной мощности и продолжительности. Проведена систематизация упражнений по характеру вызываемых ими анаэробных метаболических изменении в организме. Установлены наиболее репрезентативные тесты и критерии для количественной оценки параметров мощности и метаболической емкости алактатного анаэробного и гликолитического анаэробного процессов. Изучены эффекты изменения основных параметров упражнения: мощности, предельной продолжительности, величины интервалов отдыха и числа повторении упражнений - на характер наблюдаемых сдвигов анаэробного метаболизма. Осуществлена систематизация средств и методов применяемых при анаэробной подготовке спортсменов. Изучена динамика показателей анаэробной работоспособности спортсмена в зависимости от характера и объемов применяемых тренировочных средств.

Разработаны методические подходы к оптимизации построения тренировки, направленные на повышение анаэробной работоспособности спортсмена. Изучена эффективность применения специальных эргогенических средств для повышения анаэробной работоспособности спортсменов. Показано, что применение средств гипоксического воздействия - дыхание смесями с низким содержанием кислорода, применение процедуры углеводного насыщения, использование препаратов антигипоксического действия, оказывает выраженный эффект на улучшении показателей анаэробной работоспособности, как в форме срочного, так и кумулятивного тренировочного воздействия. Применение препаратов креатина и аминокислотных смесий, а также буфферных субстанции наиболее эффективно для усиления отставленного и кумулятивного тренировочных эффектов анаэробных упражнений.

Практическая значимость. Установлены точные количественные критерии для оценки воздействия применяемых упражнений анаэробного характера. Наряду с показателями эргометрических зависимости -"мощность-время" и "дистанция-время" эти метаболические параметры

позволяют на строго количественной основе прогнозировать процесс спортивной тренировки. При количественной оценке эффективности применяемых средств анаэробной подготовки необходимо изпользовать стандартизированные лабораторные и полевые тесты, имеющие высокие показатели возпроизводимости и валидности в отношении тестируемых анаэробных качеств спортсмена. Разработанная систематизация тренировочных средств и методов, направленных на развитие анаэробной работоспособности спортсменов, позволяет на строго количественной основе проводить учет и нормирование тренировочных нагрузок, используемых при подготовке спортсменов. Разработанные подходы к оптимизации тренировочного процесса позволяют избирательно воздействовать на отдельные анаэробные качества и добивать существенных изменений этих качеств за короткий промежуток времени. Эффективность тренировки, направленной на развитие анаэробных качеств, может быть существенно улучшена за счет применения специальных эргогенических средств.

Основные положения выносимые на защиту.

1. Исследования метаболических процессов, происходящих при выполнени анаэробных упражнений различной мощности и продолжительности демонстрируют, что в кратковременных упражнениях максимальной мощности доминирующим источником энергии служит алактатный анаэробный процесс. Наибольшая скорость и объем метаболических изменений в анаэробном гликолитическом процессе наблюдаются в упражнениях предельной продолжительности от 30 до 90 с. Между показателями мощности и емкости анаэробных процессов обнаруживается обратно-пропорциональная зависимость. Изменения в сфере анаэробного энергетического обмена могут быть с достаточной точностью оценены по обобщенным эргометрическим параметрам, выводимым из анализа зависимости "мощность-предельные время" и "дистанция-предельные время".

2. Основываясь на наблюдаемых изменениях параметров мощности и емкости анаэробных процессов весь диапазон упражнений анаэробного воздействия может быть разделен на три подзоны:

Подзону, где доминирующим источником энергии служит алактатный анаэробный процесс и где фиксируется значение максимальной алактатной анаэробной мощности (tnp=10 с).

Подзону анаэробного метаболического перехода (алактатно-гликолитического), где быстрое снижение скорости алактатного анаэробного процесса сменяется на столь же быстрое увеличение скорости гликолитического анаэробного процесса.

Подзону, где достигаются наибольшие сдвиги в гликолитическом анаэробном процессе (максимальное накопление молочной кислоты, максимальный 02-долг, наибольший 02-дефицит).

3. Для количественной оценки анаэробной работоспособности должны применяться упражнения избирательного воздействия на качества мощности и емкости алактатного и гликолитического анаэробных процессов. Наиболее репрезентативные оценки алактатной анаэробной мощности достигаются при выполнении теста Маргария или велоэргометрической модификации теста Каламена. Наиболее репрезентативная оценка алактатной анаэробной емкости выводится из результатов теста повторного МАМ. Для оценки гликолитической анаэробной способности наилучшие результаты достигаются при выполнени тестов однократной и повторной предельных нагрузок. Результаты этих стандартизированных лабораторных тестов, тесно коррелируют с лучшими достижениями спортсмена в традиционных упражнениях, относящихся к анаэробному диапазону.

4. Наиболее эффективными по воздействию на избираемые анаэробные качества являются средства повторной и интервальной тренировки. Воздействие этих средств может быть усилено за счет дополнительной гипоксической стимуляции. Применяемые средства анаэробной подготовки строго разделяются по воздействию на параметры мощности и емкости основных анаэробных процессов. Показатели анаэробной

работоспособности, фиксируемые в стандартизированных лабораторных и "полевых" тестах, обнаруживают определенную зависимость от объема и характера выполняемых тренировочных упражнений. Показатели тотОг-долга и Hlamax показывают наибольшие изменения в ограниченом диапазоне нагрузок анаэробного характера, составляющего от 10% до 15% от общего объема тренировочных нагрузок. Эти анаэробные показатели прогрессивно снижаются с увеличением объема применения нагрузок аэробного воздействия. На основе изучения количественных зависимостей для "целевых" функций становится вазможной разработка оптимальных планов построения тренировки. Эффективность применяемых средств и методов анаэробной подготовки может быть существенно усилена за счет применения эргогенических средств гипоксического воздействия, углеводного насыщения, антигипоксического действия, препаратов креатина и аминокислотных смесий и буферных субстанций.

Аэробная и анаэробная работоспособность организма

Работоспособность организма - это способность совершать работу, требующая затраты (выделения) энергии. Энергия в организме высвобождается в процессе дыхания - окисления органических веществ (белков, жиров и углеводов) кислородом воздуха.

Следовательно, в анаэробных (бескислородных) условиях на фоне снижения уровня кислорода будет наблюдаться уменьшение интенсивности окисления органических веществ и, как следствие, снижение количества выделяемой энергии, а значит и уменьшение работоспособности организма.

В аэробных условиях, наоборот, на фоне возрастания уровня кислорода будет наблюдаться повышение интенсивности окисления органических веществ и, как следствие, увеличение количества выделяемой энергии, а значит и повышение работоспособности организма.

Биохимические основы быстроты (скорости) как качества двигательной деятельности.

Двигательная деятельность обеспечивается с помощью миофибрилл - органелл клетки, отвечающих за сокращение. Основными компонентами миофибриллы являются мышечные нити. Последние бывают 2-х типов: толстые нити имеют диаметр 15 нм и содержат в основном нитевидный белок миозин, а тонкие имеют 7 нм в диаметре и состоят из актина, тропомиозина и тропонина .

Миозин построен из двух больших и четырех малых полипептидных цепей. Каждая большая цепь состоит из двух частей: вытянутого "хвоста", имеющего -спиральную конформацию, и глобулярной "головки". Хвосты обеих больших нитей заплетены друг вокруг друга, образуя сверхскрученную структуру длиной 140 нм. Глобулярная головка каждой большой цепи находится в комплексе с двумя малыми цепями; весь комплекс также является глобулярным. Таким образом, молекула миозина имеет две глобулярные головки и один фибриллярный двухцепочечный хвост.

Актин находится в миофибриллах в форме F-актина (F-фибриллярный). F-актин - это полимер, а мономерные единицы, из которых он построен, называются G-актином (G-глобулярный). По своей структуре F-актин похож на две нитки бус, в которых бусинками служат молекулы G-актина; нитки закручены друг вокруг друга в спиральную структуру с шагом 36-38 нм.

Молекула тропомиозина представляет собой тяж длиной 40 нм, образованный двумя переплетающимися -спиральными полипептидными цепями. Тропомиозин связан с F-актином. Каждая молекула тропомиозина охватывает семь G-актиновых глобул, причем соседние его молекулы немного перекрываются между собой, так что образуется непрерывная тропомиозиновая цепь, идущая вдоль F-актинового волокна. Поскольку F-актин состоит из двух ниток, с ним связаны и две тропомиозиновые цепочки.

Тропонин является комплексом трех белков: тропонина I, тропонина T и тропонина С. Он имеет в целом более или менее глобулярную форму и располагается на F-актине через правильные промежутки, равные примерно 38 нм.

Обеспечение сокращения энергией осуществляет АТФ. Глобулярные головки миозина связывают АТФ и быстро гидролизуют его, но не так легко освобождают продукты гидролиза - АДФ и Фн. F-актин, который связывается с миозином, образуя комплекс, называемый актомиозином, ускоряет отсоединение АДФ и Фн от миозиновых головок. Освободившиеся АТФ-связывающие участки актомиозинового комплекса могут связать новые молекулы АТФ, но, как только это происходит, индуцируется диссоциация актомиозина на актин и миозин. Такой цикл может повторяться многократно - в присутствии достаточного количества АТФ. Описанное взаимодействие актина и миозина лежит в основе молекулярного механизма сокращения.

Процесс сокращения включает в себя цикл наклона головок миозина, состоящий из 4-х стадий :

Миозин в толстых нитях содержит связанные АДФ и Фн, но не связан с актином тонких нитей.

При поступлении сигнала к сокращению глобулярные миозиновые головки со связанными АДФ и Фн прикрепляются к актину (образуется актомиозин).

Образование актомиозина ускоряет освобождение АДФ и Фн, что сопровождается наклоном головок миозина; при наклоне головки происходит скольжение все еще прикрепленной к ней тонкой актиновой нити вдоль толстой, что приводит к укорочению саркомера.

АТФ связывается с миозиновыми головками в актомиозине, и это приводит к отсоединению актина от миозина, после чего гидролиз АТФ миозином возвращает систему к первой фазе цикла.

Регуляция быстроты сокращения опосредуется ионами кальция. При низких концентрациях Са 2+ тропонин и тропомиозин препятствуют взаимодействию актина с миозином . Когда приходит нервный импульс и происходит деполяризация мембраны клеток, внутриклеточный уровень Са 2+ повышается, это вызывает Са 2+ -зависимое изменение конформации тропонина, которое передается тропомиозину, и в результате тропомиозин меняет свое положение на актиновой нити так, что ее связывающие участки становятся доступными для головок миозина.

При недостаточном снабжении организма кислородом мышечная деятельность происходит преимущественно в анаэробных условиях. Способность выполнять мышечную работу в условиях кислородной задолженности называется анаэробной производительностью. Различают алактаткые и лактатные анаэробные механизмы, связанные с мощностью, емкостью и эффективностью креатинкиназного и гликолитического путей ресинтеза АТФ.

Алактатная анаэробная работоспособность оценивается по величине алактатной фракции кислородного долга, содержанию неорганического фосфора в крови, значению максимальной анаэробной мощности.

Лактатная анаэробная работоспособность оценивается по максимальной величине кислородного долга, лактатной его фракции, максимальному накоплению лактата в крови, сдвигу параметров кислотно-щелочного равновесия крови.

Развитие анаэробной системы у младших школьников отстает от аэробной. Максимальная величина кислородного долга у них на 60-65% ниже, чем у взрослых. Кислородная недостаточность у детей развивается быстрее. Способность выполнять работу в условиях кислородной задолженности более низкая, чем в старшем возрасте.

У мальчиков максимальная величина кислородного долга (МКД) увеличивается в возрасте 11-13 и 16-17 лет, но у старших школьников остается на 30% ниже, чем у взрослых.

В возрасте 13-14 лет повышается алактатная фракция кислородного долга. Лактатная при этом может не изменяться или несколько снижаться. К 16-17 годам увеличение суммарного кислородного долга происходит преимущественно за счет лактатной фракции.

У девочек развитие анаэробной производительности продолжается до 14 лет, затем стабилизируется. Наибольший прирост максимальной величины кислородного долга наблюдается в возрасте 10-11 лет.

Доля алактатной фракции возрастает от 8 до 10 лет и достигает максимальных значений в 12 лет. При систематических занятиях спортом МКД увеличивается, при этом если в возрасте 10-11 лет наблюдается повышение лактатной и алактатной фракции, то в 14-17 лет увеличение происходит преимущественно за счет лактатной фракции.

Предельная работа на уровне МПК происходит за счет значительного вклада аэробного и анаэробного гликолитического механизмов энергообеспечения.

У детей младшего школьного возраста содержание лактата в крови составляет 8,7-8,5 мм., у 10-11-летних - 11,5 мм., у взрослых - 12,5 мм.

У детей младшего школьного возраста быстро сокращающиеся гликолитические волокна еще не развиты, их объем составляет 8-15%. В возрасте 12 лет количество гликолитических волокон увеличивается до 23-33%, особенно в мышцах нижних конечностей. Одновременно возрастает мощность ферментативных систем анаэробного гликолиза, что приводит к значительной продукции молочной кислоты.

Максимальный прирост анаэробной работоспособности (по содержанию лактата) совпадает с четырехкратным увеличением количества гликолитических волокон и приходится на возраст 15 лет.

При выполнении детьми и подростками стандартных нагрузок равной интенсивности у детей наблюдаются большие величины лактата и более выраженные сдвиги параметров кислотно-щелочного равновесия крови (КЩР). Это связано с малой емкостью буферных систем. Уровня взрослых буферные системы достигают в пубертатном возрасте.

Дети дошкольного и младшего школьного возраста плохо переносят анаэробно-гликолитические нагрузки, приводящие к развитию ацидоза. Детям и подросткам трудно сохранять высокий уровень энергетического обеспечения интенсивной мышечной деятельности во времени, те. проявлять скоростную и специальную выносливость. Мощность работы, которая может быть сохранена в течение 3 мин. детьми 9 лет, составляет около 40%, а подростками 15 лет - 92% от мощности работы взрослого человека. Показатели скоростной выносливости в зоне субмаксимальной мощности мало изменяются в возрасте от 7 до 11 лет, но с началом периода полового созревания они резко возрастают. У девочек после 15 лет стабилизация выносливости оказывается окончательной и без применения специальных режимов двигательной активности в дальнейшем не растет.

Выносливость к статической работе обеспечивается преимущественно анаэробным гликолитическим механизмом энергообеспечения. Важнейшим фактором, определяющим предельную длительность статического усилия, является концентрация молочной кислоты.

Возрастной прирост выносливости при статической работе может происходить за счет возрастного снижения активности анаэробного гликолиза, а также повышения устойчивости тканей скелетных мышц (возможно, ЦНС) к ацидотическим сдвигам.

В отличие от других видов выносливости в этом случае в возрастной динамике почти не выражены половые различия.

Увеличение алактатной анаэробной производительности связано с запасами креатинфосфата (КФ) в организме, которые увеличиваются постепенно по мере роста мышечной массы.

У детей и подростков механизмы фосфорилирования креатина в КФ несовершенны. В связи с этим мышечная деятельность у них приводит к значительной экскреции креатина с мочой.

У детей 9-14 лет она достигает 200 мг/сут. Уменьшение экскреции креатина отражает степень созревания мышечной ткани.

В окружающей нас атмосфере резерв кислорода для живых существ практически не исчерпаем. Несмотря на это, запасы кислорода в организме строго ограниченны, и по мере продвижения кислорода от легких к тканям его резервы становятся все более лимитируемыми. Доставка кислорода в легкие ограничивается, прежде всего, минутным объемом дыхания и эффективностью альвеолярной вентиляции. Диффузия кислорода из альвеол в кровь зависит от соотношения между легочной вентиляцией и легочным кровотоком, а так же от размеров диффузной поверхности и диффузионной проходимости альвеолярно-капиллярных мембран. Содержание кислорода в артериальной крови определяется размерами шунтирования крови в легких, сродством гемоглобина к кислороду и пр. Транспорт кислорода кровью лимитируется кислородной емкостью крови и минутным объемом крови. Доставка кислорода к клеткам зависит от распределения крови в тканях, напряжения кислорода в артериальной и венозной крови и размеров капиллярного ложа. Еще более ограничены резервы кислорода в мышцах, которые, даже при наличии предельного депо кислорода, связанного с миоглобином в мышечной ткани, лишь в течение очень короткого времени могут существовать без доставки новых порций кислорода. Клетки и их органоиды могут нормально функционировать лишь при условии соответствия скорости поэтапной доставки кислорода к тканям и их потребности в кислороде.

Основная функция кислорода в организме заключается в акцептировании электронов от цитохромоксидазного комплекса в системе митохондриального дыхания. Установлено, что максимальная скорость переноса кислорода по дыхательной цепи на митохондриальной мембране поддерживается неизменной до тех пор, пока напряжение кислорода во внутриклеточной среде не упадет ниже 3 - 5 мм рт.ст. Для того, чтобы обеспечить это напряжения кислорода на митохондриальной мембране, на наружной клеточной мембране должен создаваться градиент парциального давления кислорода порядка 15-20 мм рт.ст. На поддержание этого критического парциального давления кислорода в тканях и работают все физиологические системы организма, определяющие уровень его здоровья и функциональных возможностей.

Нормативные значения парциального давления кислорода на разных уровнях кислородного каскада организма составляют примерно следующие величины

альвеолы легких - 110 мм рт.ст.;

аортальный синус - 105-90 мм рт.ст.;

артериолы - 60-40 мм рт.ст.;

тканевые капилляры - 40-30 мм рт.ст.;

наружная клеточная мембрана - 20-15 мм рт.ст.;

митохондриальная мембрана - 5-3 мм рт.ст.

Говорить о недостатке кислорода или о возникновении состояния гипоксии в организме имеет смысл только в том случае, если не выполняются эти условия нормального функционирования системы тканевого дыхания. Единствекныт и безусловным критерием отсутствия или наличия недостатка кислорода в организме является возможность поддержания неизменной скорости митохондриального дыхания при фиксированном парциальном давлении кислорода на наружной клеточной мембране. Если эти условия не выполняются, то можно утверждать, что в этих случаях имеет место тканевая гипоксия разной степени выраженности.

Гипоксия, или кислородное голодание - особый вид функционального состояния организма, возникающий в результате недостаточного снабжения тканей кислородом или нарушения использования его тканями.

Скорость поступления кислорода в легкие и альвеолы, скорость массопереноса кислорода через альвеолярно-капиллярные мембраны, скорость массопереноса его артериальной и венозной кровью и скорость поглощения кислорода тканями взаимосвязаны. Количественный баланс между скоростью поэтапной доставки кислорода и его утилизацией определяет уровень парциальных давлений кислорода на разных участках его пути в организме: устанавливающегося значения напряжения кислорода в артериальной крови и в крови тканевых капилляров, а так же его концентрации в смешанной венозной крови.

В организме, таким образом, сочетаются две группы взаимозависимых параметров массопереноса кислорода: скорость его поэтапного продвижения и его парциальное давление на каждом этапе. Сочетание этих различных параметров, строго регулируемых организмом, характеризует режимы, в которых происходит процесс массопереноса кислорода, т.е. кислородные режимы организма. По аналогии можно говорить и о режимах массопереноса углекислого газа в организме.

Эффективность кислородных режимов организма повышается при физической нагрузке. Под эффективностью кислородных режимов организма понимают соотношения между скоростью поэтапной доставки кислорода и скоростью его потребления.

По степени снижения насыщения артериальной и венозной крови кислородом и уменьшению напряжения кислорода в системе крови можно оценить степень гипоксемии, а по напряжению кислорода в тканях и смешанной венозной крови - степень развивающейся тканевой гипоксии.

Механизмы возникновения гипоксии.

Недостаток кислорода во вдыхаемом воздухе, в противоположность холоду или физическим нагрузкам, не является раздражителем, адресованным какому-либо определенному органу чувств: он первично действует не на экстерорецепторы, а незаметно, исподволь, вторгается в организм, постепенно приводя к развитию гипоксемии, и тем самым, нарушая гомеостаз. Только после возникновения гипоксемии недостаток кислорода начинает действовать на хеморецепторы аортально-каротидной зоны и непосредственно на центры, регулирующие дыхание и кровообращение, а так же и на другие органы, вызывая тем самым неспецифическую адаптационную реакцию функциональных систем организма, ответственных за транспорт кислорода и его распределение в тканях. Во всех прочих системах организма гипоксия вызывает не увеличение, а скорее снижение уровня функций, например функций высших отделов головного мозга и двигательного аппарата, что проявляется в известных нарушениях интеллектуальной и двигательной активности. Непосредственно действие гипоксии на клетки коры головного мозга, скелетных мышц и многих других органов в значительной мере реализуется не через интенсификацию функции, а за счет того, что снизившееся напряжение кислорода в тканях лимитирует интенсивность окисления и окислительного фосфорилирования в митохондриях. Это означает недовыработку АТФ каждой митохондрией и составляет первичный эффект острой гипоксии в клетках, становясь причиной нарушения функций организма и ограничения его поведенческой и трудовой активности.

Виды гипоксии.

Причины возникновения и особенности развития, различных гипоксических состояний обусловили необходимость их систематизации и разделения на различные типы.

Современный системный подход к анализу изменений в различных звеньях системы обеспечения организма кислородом, позволяет выделять шесть типов гипоксических состояний:

  • 1. гипоксическую гипоксию, обусловленную недостатком кислорода во вдыхаемом воздухе, т.е. возмущением на входе системы и вследствие этого недостатком кислорода в альвеолярном воздухе и в артериальной крови;
  • 2. респираторную гипоксию, вызванную снижением напряжения кислорода в альвеолярном воздухе из-за поражения дыхательных путей, или функциональной недостаточности легких при нормальном содержании кислорода во вдыхаемом воздухе;
  • 3. анемическую (гемическую) гипоксию, обусловленную недостатком кислорода в артериальной крови из-за снижения кислородосвязывающих свойств гемоглобина;
  • 4. циркуляторную гипоксию, характеризующуюся снижением скорости доставки кислорода к тканям, вызванную нарушением циркуляции крови;
  • 5. гипоксию нагрузки, берущую свое начало от недостатка кислорода в тканях, обусловленного многократно возрастающим кислородным запросом усиленно функционирующей ткани и неспособностью локальной доставки кислорода удовлетворить этот повышенный кислородный запрос;
  • 6. гистотоксическую гипоксию - кислородное голодание, обусловленную повреждениями механизмов утилизации кислорода при нормальном его содержании и напряжении в клетках.

Синонимы термина гипоксия (состояния, возникающего при недостаточном снабжении тканей организма кислородом или же при нарушении его утилизации в процессе биологического окисления) -кислородная недостаточность или кислородное голодание. На основании экспериментальных исследований было предложено различать следующие степени гипоксии: скрытую, компенсированную, выраженную гипоксию с нарастающей декомпенсацией и терминальную.

При скрытой гипоксии - гипоксии первой степени (на высоте 1000 -1500 м), когда давление кислорода во вдыхаемом воздухе снижается не более чем на 35 мм рт. ст., действие гипоксического стимула на организм незначительно. Гипоксия проявляется в отдельных ограниченных участках мышечных волокон, мозаичность распределения в них рОг и избыточное снабжение кислородом в покое позволяют устранять локальную гипоксию за счет ресурсов кислорода в самом волокне без вовлечения системных компенсаторных механизмов. То есть в покое тканевая гипоксия даже без компенсаторных воздействий отсутствует, напряжение кислорода в артериальной крови снижается не более, чем на 15-12 мм рт.ст., скорость поступления кислорода в легкие, альвеолы, кровь и скорость транспорта кислорода артериальной кровью к тканям адекватны кислородному запросу, и ткани не испытывают кислородного голодания.

Вторая степень гипоксии - компенсированная гипоксия, происходит на высотах от 1500 до 3000 метров. Дефицит кислорода во вдыхаемом воздухе приводит в действие компенсаторные механизмы. Возрастает не только легочная вентиляция (МОД увеличивается на 20-80%), увеличивается также МОК и ЧСС (на 6-30%). Активизируется функция всей системы доставки кислорода и осуществляется перераспределение его резервов, улучшается кровоснабжение жизненно важных органов. Благодаря компенсаторным процессам, происходящим в организме, скорость доставки кислорода к тканям может оставаться неизменной.

Третья степень гипоксии - выраженная гипоксия с наступающей декомпенсацией, проявляется на высотах от 3500 до 7000 метров над уровнем моря (содержание кислорода в атмосферном воздухе кислорода от 11% до 6%). Несмотря на напряженную деятельность многих компенсаторных механизмов, скорость доставки кислорода и его потребление в тканях заметно понижаются. Развивается тканевая гипоксия, сопровождающаяся значительной потерей работоспособности и развитием предобморочных состояний. Из-за тканевой гипоксии мозга и гипоксии сердечной мышцы нарушается действие приспособительных механизмов, направленных на усиление доставки кислорода. Дыхание и пульс становятся все реже. Скорость кровотока уменьшается.

Четвертая степень гипоксии - некомпенсированная или терминальная гипоксия, представляет собой состояние с резко замедленным дыханием, одиночными глубокими вдохами с частотой 1 -- 3 вдоха в минуту и значительными нарушениями сердечной деятельности, приводящими к смерти.

Гипоксия, развивающаяся при нагрузке малой интенсивности, практически не отражается на общей скорости потребления Ог, локальная гипоксия не ограничивает возможности увеличения потребления Ог в целом организме, поэтому данную форму гипоксии принято называть "скрытой гипоксией нагрузки".

При мышечной деятельности умеренной интенсивности общий объем мышечной массы, где имеет место развитие гипоксического состояния, и уровень рОг в зоне наихудшего снабжения тканей кислородом зависит от того, насколько увеличивается общая объемная скорость кровотока и какое число открытых капилляров активизируется в мышцах. В том случае, если кислородный запрос увеличен в 8 раз, объемная скорость кровотока в 4 - 4,5 раза по сравнению с этими показателями в покое, то общее количество раскрытых капилляров обычно не превышает 400 на 1мм3, при этом более чем в 40% объема активной мышечной ткани интенсивность потребления Ог отстает от кислородного запроса и образуется кислородный долг. Интенсивность дыхания будет снижаться потому, что рОг на этих участках мышечного волокна будет ниже "критического". В половине объема ткани рС>2 снижается до 6 мм рт. ст., а в четверти объема оно снижается до значений менее 2 мм рт. ст. Если при той же объемной скорости кровотока увеличить число раскрытых капилляров, гипоксические участки будут занимать незначительную часть мышечного волокна (не более 0,1% всего объема) и кислородный долг будет небольшим, т. е. степень локальной гипоксии будет в заметной мере преуменьшена. Гипоксию такого характера называют компенсированной. Ее выраженность зависит от активности компенсаторных механизмов, ответственных за снабжение тканей кислородом.

Деятельность перечисленных выше механизмов направлена на компенсацию гипоксии при нагрузке. Степень выраженности гипоксии и изменение состояния работоспособности при физических нагрузках зависят от величины кислородного запроса работающих мышц и от эффективности функционирования компенсаторных механизмов, направленных на уменьшение развивающейся при работе гипоксии.

Классификация гипоксических состояний при мышечной деятельности.

Положенный в основу классификации гипоксических состояний системный подход выделяет, прежде всего, те изменения состояния функций кислородного обеспечения организма, которые возникают под воздействием внешних возмущений: снижения рОг во вдыхаемом воздухе, изменения общего барометрического давления и т.п. Гипоксические состояния, выделяемые по этому признаку, обычно разделяются на следующие типы: гипоксический, гипербарический и гипероксический. Гипоксические состояния, возникающие при значительном возрастании потребления СО2, т.е. при увеличении нагрузки на систему, выделяются в отдельный тип, обозначаемый обычно как "гипоксия нагрузки".

Внутренние возмущения, проявляющиеся вследствие патологических изменений в состоянии респираторного аппарата, сердечно-сосудистой системы и системы крови, также могут приводить к развитию гипоксических состояний, и эти формы гипоксии, обычно обозначаются как респираторная, циркуляторная и гемическая гипоксия.

Обычно различают восемь основных типов гипоксии: гипоксическую, циркуляторную, гипероксическую, гипербарическую, респираторную циркуляторную, гемическую, гипоксию нагрузки и первичную тканевую (цитотоксическую) гипоксию. Каждый из этих типов гипоксии может иметь несколько различных степеней, различающихся по тяжести нарушения обмена веществ.

На основании происхождения, проявления и особенностей компенсации, гипоксия нагрузки была выделена в особый тип гипоксических состояний. Было предложено различать четыре ее степени: скрытую (латентную), субкомпенсированную, компенсированную и декомпенсированную гипоксию нагрузки.

Гипоксия нагрузки первой степени - скрытая (латентная) гипоксия - проявляется в отдельных ограниченных участках мышечных волокон, а неравномерность распределения в них рС>2 и избыточное снабжение кислородом в покое позволяют устранять локальную гипоксию за счет ресурсов кислорода в самом волокне без вовлечения системных компенсаторных механизмов.

Вторая степень гипоксии нагрузки - компенсированная гипоксия -наиболее распространенная в обычной деятельности человека, развивается при мышечной деятельности умеренной интенсивности и в компенсацию возникающей локальной гипоксии вовлекается вся система дыхания. Вентиляция легких, кровоток и скорость доставки кислорода к возрастают. При увеличивающейся потребности в кислороде работающих мышц образуется дефицит Ог, и в крови появляется некоторое количество кислых продуктов, а в дальнейшем происходит их быстрая нейтрализация: существенных сдвигов рН не происходит. При увеличении интенсивности нагрузки образование и скорость выведения СОг может увеличиваться до 3 л]мин, дыхательный коэффициент повышаться до единицы, скорость массопереноса СОг смешанной венозной кровью может достигать 14-15 л]мин, а артериальной кровью до 11 - 12 л/мин. При этом может накапливаться небольшой кислородный долг (3 - 5%), проявляться тенденция к сдвигу рН в кислую сторону. Вторая степень ГН характеризуется наиболее высокой экономичностью внешнего дыхания: вентиляционный эквивалент минимален, коэффициент использования кислорода и кислородный эффект дыхательного цикла максимальны.

И ретья степень гипоксии нагрузки -- быралсенная гипоксия с наступающей декомпенсацией - развивается при нагрузках с потреблением 02 75 - 85% от уровня МПК. Скорость доставки (Ѕ не соответствует потребности в нем тканей, образуется кислородный долг и наблюдается избыток выделяемого СОг. Отмечается не только резкая венозная, но и артериальная гипоксемия. При высокой вентиляции (до 90 - ПО лмин) и объемном кровотоке (у квалифицированных спортсменов до 25 - 28 лмин), возросшем уровне доставки и потребления кислорода дальнейшее значительное повышение утилизации кислорода из артериальной крови оказывается уже невозможным. Особенностью третьей степени ГН является некоторое снижение экономичности внешнего дыхания при сохранении высокой эффективности гемодинамики. Возможность выполнения работы при третьей степени гипоксии нагрузки ограничивается несколькими десятками минут. Выраженная гипоксия с наступающей декомпенсацией может послужить пусковым механизмом для развития утомления при мышечной деятельности. Усиление же вегетативных функций (дыхания и кровообращения), направленное на поддержание кислородных параметров на гомеостатическом уровне, может являться одним из компенсаторных механизмов преодоления утомления при мышечной деятельности.

Четвертая степень гипоксии нагрузки - некомпенсированная гипоксия - при которой наблюдается наиболее выраженное несоответствие скорости доставки Ог кислородному запросу организма. Несмотря на то, что увеличивается кислородный долг, потребление Ог при данной степени гипоксии максимально и оно, как правило, не изменяется при повышении тяжести работы. Напряжение Ог в смешанной венозной крови может падать ниже 12 мм рт. ст., насыщение кислородом снижается до 17 - 15% и содержание Ог составляет 1-3 об.%. Насыщение артериальной крови кислородом падает до 85 - 83%, а напряжение Ог снижается на 8 - 10 мм массопереноса Ог и СОг наиболее высокая, однако, так как вентиляция увеличивается в значительно большей степени, чем потребление Ог, дальнейшее ее усиление не является эффективным, так как значительная доля от кислородного прихода тратится на работу самих дыхательных мышц. Работа сердца так же становится менее эффективной: ударный объем крови снижается, а поддержание высокой скорости кровотока обеспечивается в большей степени за счет увеличения ЧСС. Развитие выраженной тканевой гипоксии приводит к нарушению функции компенсаторных механизмов, наступает отказ от дальнейшего выполнения работы. Продолжительность нагрузки при данной форме гипоксического состояния исчисляется десятком секунд, и только отдельные тренированные люди могут выполнять ее в течение нескольких минут. Рассмотренные степени гипоксии нагрузки могут проявляться при мышечной работе как повышающейся, так и постоянной интенсивности. Гипоксия нагрузки может сочетаться с другими типами гипоксии, например с гипоксической гипоксией, а в больном организме она может развиваться при нагрузке на фоне респираторной, циркуляторной или анемической гипоксии.

Высокий уровень физической работоспособности - одна из главных предпосылок достижения больших успехов в спорте. Среди факторов, обусловливающих спортивную работоспособность, энергетические возможности человеческого организма являются "ведущим звеном в общей цепи событий".

В преобладающем большинстве видов спорта достижение высоких затрат энергии. С физиологической точки зрения, способность человека производить тяжелую мышечную работу зависит, прежде всего, от возможностей усиления энергетического обмена в тканях и уровня активности тех функциональных систем, которые обеспечивают этот обмен. Первые попытки провести анализ, а затем оценить энергетические процессы, происходящие в работающих мышцах в анаэробных условиях были сделаны в начале XX века. Тогда же появились большие расхождения взглядов и мнений среди исследователей этой проблемы.

В своей работе датированной 1934 годом, D. Dili констатировал, что выполняемая в течение нескольких минут мышечная нагрузка только в небольшой степени определяется используемым аэробным энергетическим источником, а величина выполненной работы в большой степени обуславливается темпом использования этого источника энергии. Впервые понятие - анаэробная работоспособность употребил в своих работах Margaria с соавт. В более поздних работах этого направления делались многократные попытки найти окончательное определение анаэробной работоспособности. Ключевыми понятиями, объясняющими и наиболее полно описывающими процессы анаэробного характера, являются понятия нагрузки и энергии.

Как только скорость креатинфосфокиназной реакции становится неадекватной регенерации АТФ и в мышцах накапливается АДФ, основную роль в процессе ресинтеза АТФ начинает играть анаэробный гликолиз. Суть гликолиза состоит в ферментативном расщеплении внутримышечных запасов гликогена и глюкозы, поступающей в клетки из крови. Прежде, чем глюкоза или гликоген используются для образования энергии, они должны ірансформироваться в иіюкозо-6-фосфаі. Для превращения одной молекулы глюкозы в глюкозо-6-фосфат необходимо затратить одну молекулу АТФ. При расщеплении гликогена глюкозо-6-фосфат образуется без затрат энергии. Глюкозо-6-фосфат подвергается дальнейшем превращениям, в результате которых образованные в ходе гликолиза промежуточные макроэргические соединения - дифосфоглицериновая и фосфопировиноградная кислоты, передают богатую энергией фосфатную группу на АДФ, что ведет к резинтезу АТФ. Судьбу пировиноградной кислоты определяет использование кислорода. В анаэробных условиях она превращается в молочную кислоту.

Общий итог гликолиза можно представить в виде следующих уравнений:

СбНпОб + 2АДФ + 2Н3Р04 ->2С3НбОз + 2АТФ + 2Н20

[СбН10О5]п + ЗАДФ + ЗН3Р04-> 2СзНбОз + [С6Н,о05]п-1 + ЗАТФ + 2Н20

гликоген

В результате гликолиза образуется 3 моля АТФ на каждый моль глюкозного остатка из расщепленного гликогена. Если вместо гликогена используется глюкоза, тогда образуется всего 2 моля АТФ.

Анаэробный распад гликогена или глюкозы контролируется несколькими ферментами. Хотя эти ферменты часто называют "рассеянными ферментами" они не распределены по саркоплазме неорганизованным образом, как правило, эти ферменты тесно связаны с клеточными структурами. Регулирующими ферментами гликолиза являются фосфорилаза и фосфофруктокиназа. При мышечном сокращении оба фермента активируются одновременно и пропорциональным образом. Обычно считается что скорость распада гликогена лимитируется фосфорилазной реакцией. Акшвность мышечной фосфорилазы увеличивается в присутствии АМФ, ионов Са, Na и ацетихолина. Количество этих активаторов возрастает с началом мышечной работы. Снижение скорости фосфоролиза наблюдается при уменьшении концентрации гликогена и фосфорной кислоты, а так же при повышении концентрации глюкозо-6-фосфата. Механизмы, снижающие скорость фосфоролиза, препятствуют непроизводительным затратам углеводных запасов при усилении мышечной активности.

Максимальная мощность гликолиза составляет около 2,5 кДж]кгхмин. Наибольшей скорости гликолиз достигает на 20-30-й секунде от начала работы, а в конце 1-й минуты физической нагрузки он становится основным источником ресинтеза АТФ. Размеры метаболической емкости гликолиза, определяемые внутримышечными запасами углеводов и наличием буферных систем, стабилизирующих значение внутри клеточного рН, более чем в 10 раз превышают емкость креатинофосфокиназной реакции, и они составляет около 1050 кДж на килограмм мышечной ткани. Метаболическая эффективность гликолиза оценивается значениями к.п.д. порядка 0,35-0,52.

Факторы, определяющие анаэробную работоспособность спортсменов.

Адаптацию спортсмена к напряженной деятельности можно определить как по критериям рабочей производительности, так и по функциональным сдвигам при работе. Критерии рабочей производительности определяют способность спортсмена выполнять специальную работу при заданной мощности или продолжительности упражнения. Показатели функциональных сдвигов при работе определяют величину и характер происходящих изменений в метаболизме, внешнего дыхания, транспорта респираторных газов, циркуляции крови, имеющих наиболее важное значение в обеспечении работоспособности. Согласно мнению Н.И. Волкова физическая работоспособность человека определяется большим числом факторов, которые объединяются в две группы:

факторы потенций (внутренних возможностей) к которым относятся скоростно-силовые качества и биоэнергетические возможности человека;

факторы производительности, к числу которых относятся техника выполнения спортивных упражнений, тактика ведения соревновательной

Факторы, объединенные в группу производительности, определяют степень реализации потенций в конкретных условиях данного вида спорта. Так, рациональная техника выполнения упражнений позволяет в большой степени и более эффективно реализовать скоростно-силовые и энергетические возможности в каждом акте движения. Совершенная тактика ведения соревновательной деятельности позволяет лучше реализовать скоростно-силовые и биоэнергетические потенции в ходе спортивного соревнования или в его отдельных эпизодах. Вклад выше указанных факторов в общий спортивный результат существенно варьирует в зависимости от типа упражнения, уровня физического развития, внешних условий и т.п.

Биоэнергетические возможности организма являются наиболее существенным фактором, лимитирующим физическую работоспособность. Как уже отмечалось ранее, в зависимости от характера происходящих энергетических превращений принято выделять два обобщенных физиологических свойства, отражающих возможности энергетического обеспечения мышечной деятельности в анаэробных условиях:

алактатную анаэробную способность, связанную с процессом преобразования энергии в АТФ-азной и КрФ-киназной реакциях;

гликолитическую анаэробную способность, отражающую возможности усиления при работе анаэробного гликолитического процесса, в ходе которого происходит накопление молочной кислоты в организме.

Все перечисленные выше компоненты анаэробной работоспособности, можно охарактеризовать с помощью биохимических критериев трех типов: мощности, емкости и эффективности.

После окончания выполнения скоростного упражнения, концентрация АТФ в мышце очень быстро восстанавливается до уровня близкого к исходному. Степень снижения концентрации АТФ в период восстановления обычно не превышает 20%.

Механизм восстановления АТФ можно представить в виде следующего уравнения:

(АТФ)Я = аКрФ + bLa + V02

где: аКрФ - скорость реакции распада КрФ; bLa - скорость образования лактата; Vd - уровень потребления (ј).

При кратковременных нагрузках, уравнение приобретает следующий вид:

(ATO)]t = аКрФ.

Концентрация АТФ в мышцах составляет около 5 мМол]кг, а КрФ 15-16 мМол]кг. При скорости гидролиза АТФ актомиозином, равной приблизительно 3 ммол КрФ в секунду на килограмм мышечной массы, максимальная продолжительность энергопродукции в алактатном режиме ограничена до 6 - 7 секунд, если допустить полное исчерпание АТФ, которое никогда не наступает.. Скорость, с которой анаэробные пути обеспечивают ресинтез АТФ, является предельной для развития и поддержания мышечной работы высокой мощности. Скорость, анаэробного ресинтеза АТФ значительно выше по сравнению с аэробным, но очень ограничена во времени. Человек способен достигнуть в 10 - 12 раз большей мощности работы по сравнению с уровнем, соответствующим значению МПК, но такая возможность сохраняется лишь в течение короткого промежутка времени. Ресинтез АТФ за счет креатинофосфокиназной реакции протекает с максимальной скоростью, исполняет роль "энергетического буфера", обеспечивая постоянство содержания АТФ в мышцах. Наивысшей скорости гликолиз достигает на 20-30 с после начала работы, а в конце 1-й минуты работы он становится основным источником энергии для ресинтеза АТФ. Включение гликолитической реакции, хотя и содействует в определенном периоде спринтерской работы быстрому ресинтезу фосфагенов, но оно усиливает ацидотические сдвиги в мышцах и крови. Снижение активности ключевых ферментов гликолиза под влиянием образующейся молочной кислоты и снижения внутриклеточного рН ведет к замедлению скорости гликолиза. Запасы углеводов и размеры буферных систем, определяющие метаболическую емкость гликолиза, обеспечивают выполнение упражнения с заданной мощностью в интервале от 30 до 150 секунд. Таким образом, емкость. Ресинтез АТФ и КрФ (за счет их нефосфорилированных предшественников) поддерживает после работы повышенный уровень кислородного потребления в тканях. Для этих процессов требуется дополнительное количество кислорода. Это дополнительное количество кислорода называется алактатным кислородным долгом.

В образовании алактатного кислородного долга кроме процессов ресинтеза КрФ и АТФ существенную роль играют также окислительные превращения накопившихся во время работы анаэробных метаболитов, а также восстановление запасов кислорода в миоглобиновом и гемоглобиновом депо. Образование алактатного кислородного долга завершается в первые 2-3 мин работы. Величина этого компонента кислородного долга растет линейно с ростом интенсивности работы. Работа с большой мощностью изменяет линейное возрастание алактатной кислородной задолженности в асимптотическое, достигая предела, определяемого размерами фонда фосфатных акцепторов в работающих мышцах.