Энергообеспечение мышечной деятельности. Аэробные и анаэробные факторы спортивной работоспособности. Гипоксия и анаэробная работоспособность пловцов

Аэробная и анаэробная производительность спортсмена.

Аэробная производительность - это способность организма выполнять работу, обеспечивая энергетические расходы за счет кислорода, поглощаемого непосредственно во время работы. Потребление кислорода при физической работе возрастает по мере увеличения тяжести и продолжительности работы. Наибольшее количество кислорода, которое организм может потребить за 1 минуту при предельно тяжелой для него работе - называется максимальным потреблением кислорода (МПК)

MПK - является показателем аэробной производительности. МПК можно определить, задавая стандартную нагрузку на велоэргометре. Зная величину нагрузки и подсчитав ЧСС, можно с помощью специальной номограммы определить уровень МПК. у спортсменов, в зависимости от специализации, - 50-90 мл/кг.

Для выполнения любой работы, а также для нейтрализации продуктов обмена и восстановления энергетических запасов необходим кислород. Количество кислорода, которое требуется для выполнения определенной работы - называется кислородным запросом

Различают суммарный и минутный кислородный запрос.

Суммарный кислородный запрос - это количество кислорода, необходимое для совершения всей работы

Минутный кислородный запрос - это количество кислорода, требующееся для выполнения данной работы в каждую конкретную минуту.

Минутный кислородный запрос зависит от мощности выполняемой работы. Наибольшей величины он достигает на коротких дистанциях. Например, при беге на 800 м он составляет 12-15 л/мин, а при марафонском - 3-4 л/мин.

Суммарный запрос тем больше, чем больше время работы. При беге на 800 м он составляет 25-30 л, а при марафонском - 450-500 л.

Анаэробная производительность - это способность организма выполнять работу в условиях недостатка кислорода, обеспечивая энергетические расходы за счет анаэробных источников.

Работа обеспечивается непосредственно запасами АТФ в мышцах, а также за счет анаэробного ресинтеза АТФ с использованием КрФ и анаэробного расщепления глюкозы (гликолиза).

Для восстановления запасов АТФ и КрФ, а также для нейтрализации молочной кислоты, образовавшейся в результате гликолиза необходим кислород. Но эти окислительные процессы могут идти уже после окончания работы. Для выполнения любой работы требуется кислород, только на коротких дистанциях организм работает в долг, откладывая окислительные процессы на восстановительный период.

Количество кислорода, которое требуется для окисления продуктов обмена, образовавшихся при физической работе, называется - кислородным долгом.

Кислородный долг можно также определить как разницу между кислородным запросом и тем количеством кислорода, которое организм потребляет во время работы.



Показателем анаэробной производительности является - максимальный кислородный долг.Максимальный кислородный долг -это максимально возможное накопление продуктов анаэробного обмена, требующих окисления, при котором организм еще способен выполнять работу. Чем выше тренированность, тем больше м В среднем величины максимального кислородного долга у спортсменов выше, чем у неспортсменов, и составляют у мужчин 10,5 л (140 мл/кг веса тела), а у женщин-5,9 л (95 мл/кг веса тела). У неспортсменов они равны (соответственно) 5 л (68 мл/кг веса тела) и 3,1 л (50 мл/кг веса тела). У выдающихся представителей скоростно-силовых видов спорта (бегунов на 400 и 800 м) максимальный кислородный долг может достигать 20 л (Н. И. Волков). Величина кислородного долга очень вариативна и не может быть использована для точного предсказания результата. аксимальный кислородный долг.

В кислородном долге различают 2 фракции (части): алактатную и лактатную. Алактатная фракция долга идет на восстановление запасов КрФ и АТФ в мышцах.Лактатная фракция (лактаты - соли молочной кислоты) - большая часть кислородного долга. Она идет на ликвидацию молочной кислоты, накопившейся в мышцах. При окислении молочной кислоты образуются безвредные для организма вода и углекислый газ.Алактатная фракция преобладает в физических упражнениях, длящихся не более 10с, когда работа идет в основном за счет запасов АТФ и КрФ в мышцах. Лактатная преобладает при анаэробной работе большей длительности, когда интенсивно идут процессы анаэробного расщепления глюкозы (гликолиз) с образованием большого количества молочной кислоты.При интенсивной работе длящейся не менее 5-ти минут, наступает момент, когда организм не в состоянии обеспечить свои возрастающие потребности в кислороде. Поддержание достигнутой мощности работы и дальнейшее её увеличение обеспечивается за счет анаэробных источников энергии.Появление в организме первых признаков анаэробного ресинтеза АТФ - называется порогом анаэробного обмена (ПАНО). ПAHO считается в процентах от МПК. У спортсменов в зависимости от квалификации ПАНО равен 50-80 % от МПК. Чем выше ПАНО, тем больше возможностей у организма выполнять тяжелую работу за счет аэробных источников, более выгодных энергетически. Поэтому у спортсмена, имеющего высокий ПАНО (65% от МПК и выше), при прочих равных условиях будет более высокий результат на средних и длинных дистанциях.



В системе оздоровительной физической культуры выделяют следующие основные направления:

Оздоровительно-рекреативное,

Оздоровительно-реабилитационное,

Спортивно-реабилитационное, гигиеническое.

Оздоровительно-рекреативная физическая культура - это отдых, восстановление сил с помощью средств физического воспитания (спортивные игры, туризм, охота и т.д.). Рекреация означает отдых, восстановление сил, израсходованных в процессе труда.

Оздоровительно-реабилитационная физическая культура - это специально направленное использование физических упражнений в качестве средств лечения заболеваний и восстановления функций организма, нарушенных или утраченных вследствие заболеваний, травм, переутомления и др.

Оздоровительно-реабилитационное направление в нашей стране представлено в основном тремя формами:

· группы ЛФК при диспансерах, больницах

· группы здоровья в коллективах физической культуры

· самостоятельные занятия.

Большую роль в системе подготовки спортсмена играет спортивно-реабилитационная физическая культура. Она направлена на восстановление функциональных и приспособительных возможностей организма после длительных периодов напряженных тренировок и соревновательных нагрузок, особенно при перетренировке и ликвидации последствий спортивных травм.

Гигиеническая физическая культура - это различные формы физической культуры, включенные в рамки повседневного быта (утренняя гимнастика, прогулки и т.д.)

Закаливание - это система специальной тренировки терморегуляторных процессов организма, включающая в себя процедуры, действие которых направлено на повышение устойчивости организма к переохлаждению или перегреванию. В результате закаливания увеличивается работоспособность, снижается заболеваемость, особенно простудного характера, улучшается самочувствие.

Наиболее сильная закаливающая процедура - плавание в ледяной воде - имеет ряд противопоказаний, особенно противопоказано: детям, подросткам и людям, постоянно страдающим заболеваниями верхних дыхательных путей. При длительных перерывах в закаливании его эффект снижается или теряется совсем.

Задачами физкультуры в целях профилактики профессиональных заболеваний являются улучшения функционального состояния и предупреждения прогрессирования болезни: повышение физической и умственной работоспособности, адаптация к внешним факторам; снятие утомлениям повышение адаптационных возможностей; воспитание потребности в закаливании, занятиях оздоровительной физкультурой.

Система реабилитации включает уроки физкультуры, желательно на свежем воздухе, занятие ЛФК, терренкур, прогулки на лыжах, езду на велосипеде. Предпочтительнее циклические виды спорта, особенно при заболеваниях сердца, легких, ожирении .

При заболеваниях сердечно-сосудистой, дыхательной и эндокринной систем- упражнения в ходьбе, катание на коньках.

При проведении занятий с работниками, имеющими изменения опорно-двигательного аппарата, важны профилактические занятия, направленные в первую очередь на придание работнику правильной осанки и на нормализацию функций ОДА. Не следует допускать чрезмерных нагрузок. Упражнения с гантелями, мячами и на тренажерах должны выполняться только в щадящем для позвоночника режиме, лежа и с включением в конце занятий упражнений на растягивание и на релаксацию.

Виды оздоровительной физической культуры
Существует много форм физической культуры, которые используются для нормализации функционального состояния человека, а так же для профилактики заболеваний.

Утренняя гигиеническая гимнастика (УГГ) - одно из средств физической культуры. Она развивает силу, гибкость, координацию движений. Улучшает деятельность внутренних органов, вызывает подъем эмоций, особенно если упражнение выполняется под музыку. УГГ лучше выполнять утром в сочетанием с закаливанием, но не очень рано, особенно больным с заболеванием сердечно- сосудистой системы.

Подвижные спортивные игры нормализация психо-эмоционального состояния.

Ходьба и бег . Ходьба как физическое упражнение - ценное средство для улучшения деятельности ЦНС , сердечно –сосудистой и дыхательной систем . Ходьба должна быть продолжительной, но не утомительной.

Бег - физическое упражнение с большой нагрузкой. Он развивает выносливость, особенно полезно для профилактики заболевания сердечно-сосудистой системы, ожирения и др. Его лучше сочетать с ходьбой и дыхательными упражнениями. Ходьбу и бег можно проводить днем и вечером.

Велосипедный спорт велопрогулки показаны при заболеваниях сердечно- сосудистой, дыхательной систем и нарушение обмена веществ, а также при последствии травм суставов ног (для разработки тугоподвижности и тренировки мышц). Зимой велопрогулки заменяются упражнениями на велотренажерах.

Плавание - отличное тренирующее средство и закаливающее. Плавание усиливает деятельность кардиоресператорной системы и обмен веществ, а при травмах и заболеваниях позвоночника ведет к исчезновению болей и улучшению подвижности в суставах.

Особенно важно сочетание физических нагрузок с закаливанием для работников, имеющих отклонения в состоянии здоровья. Так как такие занятия повышают общую тренированность организма, способствуют нормализации обменных процессов, функционального состояния, а так же ведут к усилению закаливания и предупреждают простудные заболевания.

Анаэробная мощность

Анаэробная мощность – это максимальная способность двух анаэробных энергетических систем (АТФ + КФ) и гликолиза производить энергию. АТФ и КФ – высоко энергетичные сложные соединения, которые в ограниченном количестве содержатся в мышечных клетках. Они обеспечивают энергию для высокоинтенсивных нагрузок, продолжительность которых не превышает 6 - 8 с. Гликолиз поставляет энергию для интенсивной активности, длящейся 60 - 90 с. В результате анаэробного гликолиза образуются лактам и ионы водорода, по мере их накопления возникает утомление мышц.

Анаэробная мощность необходима для достижения успеха в видах спорта высокой интенсивности и небольшой продолжительности. Несмотря на создание ряда тестов, измерить уровень анаэробной мощности трудно. Чаще всего определяют уровень лактата в крови после изнурительной физической нагрузки, чтобы найти величину выделяемой анаэробной энергии. Наличие лактата свидетельствует о реакции гликолиза, однако количество лактата в крови, по всей видимости, не позволяет точно установить, сколько его было произведено мышцей. Это можно объяснить, исходя из трех вариантов: когда лактат покидает мышцу, некоторое его количество преобразуется; может наблюдаться различная вариабельность объема для разбавления лактата; трудно определить, когда наступило равновесие, и было ли оно вообще.

Другой тест основан на измерении дефицита кислорода после физической нагрузки до возвращения к исходному уровню. Трудность в данном случае состоит в том, что для того, чтобы синтезировать гликоген из лактата, требуется больше энергии, чем для того, чтобы освободить его в процессе преобразования гликогена; некоторое количество лактата окисляется во время физической нагрузки, что не отражается в количестве кислорода, потребляемого после завершения физической нагрузки; кроме того, помимо лактата и другие факторы вызывают повышенное потребление кислорода после изнурительной нагрузки.

Вычисляя дефицит кислорода при кратковременной суб максимальной нагрузке, можно довольно точно оценить анаэробную работу. Что касается максимальной нагрузки небольшой продолжительности (т.е. 1 - 10 мин), показатели дефицита кислорода можно использовать, если есть возможность определить энергетическую стоимость работы. В этом случае необходимо установить затраты энергии, определив механическую эффективность данного вида активности, или же установив взаимосвязь между интенсивностью нагрузки и потреблением кислорода.

Тесты, предусматривающие приложение максимального усилия в течение короткого периода времени (т.е. 0 - 30 с), могут оказаться недостаточно продолжительными, чтобы истощить все запасы анаэробной энергии, особенно производимой в результате гликолиза. В первые несколько секунд интенсивной нагрузки концентрация АТФ снижается на 2 %, а концентрация КФ - на 80 %. Эти алактацидные компоненты обусловливают примерно 25 - 30 % имеющейся анаэробной энергии у нетренированных или тренированных людей. Гликолиз обусловливает 60 % получаемой анаэробным путем энергии у нетренированных людей и 70 % - у тренированных.

Тренировочные занятия, направленные на повышение анаэробной энергетической способности мышц, предусматривают выполнение высокоинтенсивных упражнений продолжительностью 40 - 60 с несколько раз. Это позволяет повысить активность гликолитических ферментов, улучшить буферную способность и выведение лактата из работающих мышц. Тренировки на выносливость, улучшающие аэробную способность (например, улучшение мышечного кровотока и капилляризации, увеличение содержания гемоглобина, миоглобина и окислительных ферментов), способствуют повышению анаэробной способности, улучшая транспорт и окисление лактата.

С энергетической точки зрения, все скоростно-силовые упражнения относятся к анаэробным. Предельная продолжительность их - менее 1-2 мин. Для энергетической характеристики этих упражнений используется два основных показателя: максимальная анаэробная мощность и максимальная анаэробная емкость (способность). Максимальная анаэробная мощность. Максимальная для данного человека мощность работы может поддерживаться лишь несколько секунд. Работа такой мощности выполняется почти исключительно за счет энергии анаэробного расщепления мышечных фосфагенов - АТФ и КрФ. Поэтому запасы этих веществ и особенно скорость их энергетической утилизации определяют максимальную анаэробную мощность. Короткий спринт и прыжки являются упражнениями, результаты которых зависят от максимальной анаэробной мощности,

Для оценки максимальной анаэробной мощности часто используется тест Маргарин. Он выполняется следующим образом. Испытуемый стоит на расстоянии 6 м перед лестницей и вбегает по ней, как только можно быстрее. На 3-й ступеньке он наступает на включатель секундомера, а на 9-й - на выключатель. Таким образом, регистрируется время прохождения расстояния между этими ступеньками. Для определения мощности необходимо знать выполненную работу - произведение массы (веса) тела испытуемого (кг) на высоту (дистанцию) между 3-й и 9-й ступеньками (м)-и время преодоления этого расстояния (с). Например, если высота одной ступеньки равна 0,15 м, то общая высота (дистанция) будет равна 6 * 0,15 м =0,9 м.При весе испытуемого 70 кг и времени преодоления дистанции 0,5 с. мощность составит (70 кг*0,9 м)/0,5с = 126 кгм/а.

В табл. 1 приводятся "нормативные" показатели максимальной анаэробной мощности для женщин, и мужчин.

Таблица 1 Классификация показателей максимальной анаэробной мощности (кгм/с, 1 кгм/с = 9,8 Вт.)

Классификация

Возраст, лет

посредственная

отличная

посредственная

отличная

Максимальная анаэробная емкость. Наиболее широко для оценки максимальной анаэробной, емкости используется величина максимального кислородного долга - наибольшего кислородного долга, который выявляется после работы предельной продолжительности (от 1 до 3 мин). Это объясняется тем, что наибольшая часть избыточного количества кислорода, потребляемого после работы, используется для восстановления запасов АХФ, КрФ и гликогена, которые расходовались в анаэробных процессах за время работы. Такие факторы, как высокий уровень катехоламинов в крови, повышенная температура тела и увеличенное потребление О 2 часто сокращающимся сердцем и дыхательными мышцами, также могут быть причиной повышенной скорости потребления О 2 во время восстановления после тяжелой работы. Поэтому имеется лишь весьма умеренная связь между величиной максимального долга и максимальной анаэробной емкостью.

В среднем величины максимального кислородного долга у спортсменов выше, чем у неспортсменов, и составляют у мужчин 10,5 л (140 мл/кг веса тела), а у женщин-5,9 л (95 мл/кг веса тела). У неспортсменов они равны (соответственно) 5 л (68 мл/кг веса тела) и 3,1 л (50 мл/кг веса тела). У выдающихся представителей скоростно-силовых видов спорта (бегунов на 400 и 800 м) максимальный кислородный долг может достигать 20 л (Н. И. Волков). Величина кислородного долга очень вариативна и не может быть использована для точного предсказания результата.

По величине алактацидной (быстрой) фракции кислородного долга можно судить о той части анаэробной (фосфагенной) емкости, которая обеспечивает очень кратковременные упражнения скоростно-силового характера (спринт).

Простое определение емкости алактацидного кислородного долга состоит в вычислении величины кислородного долга за первые 2 мин восстановительного периода. Из этой величины можно выделить "фосфагенную фракцию" алактацидного долга, вычитая из алактацидного- кислородного долга количество кислорода, используемого для восстановления запасов кислорода, связанного с миоглобином и находящегося в тканевых жидкостях: емкость "фосфагенного"

(АТФ + КФ) кислородного долга (кал/кг веса.тела) = [ (О 2 -долг 2мин - 550) * 0,6 * 5 ] / вес тела (кг)

Первый член этого уравнения - кислородный долг (мл), измеренный в течение первых 2 мин восстановления после работы предельной продолжительности 2- 3 мин; 550 - это приблизительная величина кислородного долга за 2 мин, который идет на восстановление кислородных запасов миоглобина и.тканевых жидкостей;г 0,6 - эффективность оплаты алактацидного кислородного долга; 5 - калорический эквивалент 1 мл О 2 .

Типичная максимальная величина "фосфагенной фракции" кислородного долга - около 100 кал/кг веса тела, или 1,5-2 л О2-В результате тренировки скоростно-силового характера она может увеличиваться в 1,5-2 раза.

Наибольшая (медленная) фракция кислородного долга после работы предельной продолжительности в несколько десятков секунд связана с анаэробным гликолизом, т.е. с образованием в процессе выполнения скоростно-силового упражнения молочной кислоты, и потому обозначается как лактацидный кислородный долг. Эта часть кислородного долга используется для устранения молочной кислоты из организма путем ее окисления до СО2 и Н2О и ресинтеза до гликогена.

Для определения максимальной емкости анаэробного гликолиза можно использовать расчеты образования молочной кислоты в процессе мышечной работы. Простое уравнение для оценки энергии, образующейся за счет анаэробного гликолиза, имеет вид: энергия анаэробного гликолиза (кал/кг веса тела) = содержанию молочной кислоты в крови (г/л) * 0,76 * 222, где содержание молочной кислоты определяется как разница между наибольшей концентрацией ее на 4-5-й мин после работы (пик содержания молочной кислоты в крови) и концентрацией в условиях покоя; величина 0,76 - это константа, используемая для коррекции уровня молочной кислоты в крови до уровня ее содержания во всех жидкостях; 222 - калорический эквивалент 1 г продукции молочной кислоты.

Максимальная емкость лактацидного компонента анаэробной энергии у молодых нетренированных мужчин составляет около 200 кал/кг веса тела, что соответствует максимальной концентрации молочной кислоты в крови около 120 мг% (13 ммоль/л). У выдающихся представителей скоростно-силовых видов спорта максимальная концентрация молочной кислоты в крови может достигать 250-300 мг%, что соответствует максимальной лактацидной (гликолитической) емкости 400-500 кал/кг веса тела.

Такая высокая лактацидная емкость обусловлена рядом причин. Прежде всего, спортсмены способны развивать более высокую мощность работы и поддерживать ее более продолжительно, чем нетренированные люди. Это, в частности, обеспечивается включением в работу большой мышечной массы (рекрутированием), в том числе быстрых мышечных волокон, для которых характерна высокая гликолитическая способность. Повышенное содержание таких волокон в мышцах высококвалифицированных спортсменов - представителей скоростно-силовых видов спорта - является одним из факторов, обеспечивающих высокую гликолитическую мощность и емкость. Кроме того, в процессе тренировочных занятий, особенно с применением повторно-интервальных упражнений анаэробной мощности, по-видимому, развиваются механизмы, которые позволяют спортсменам "переносить" ("терпеть") более высокую концентрацию молочной кислоты (и соответственно более низкие значения рН) в крови и других жидкостях тела, поддерживая высокую спортивную работоспособность. Особенно это характерно для бегунов на средние дистанции.

Силовые и скоростно-силовые тренировки вызывают определенные биохимические изменения в тренируемых мышцах. Хотя содержание АТФ и КрФ в них несколько выше, чем в нетренируемых (на 20-30%), оно не имеет большого энергетического значения. Более существенно повышение активности ферментов, определяющих скорость оборота (расщепления и ресинтеза) фосфагенов (АТФ, АДФ, АМФ, КрФ), в частности миокиназы и креатин" фосфокиназы (Яковлев Н. Н.).

Максимальное потребление кислорода. Аэробные возможности человека определяются, прежде всего, максимальной для него скоростью потребления кислорода. Чем выше МПК, тем больше абсолютная мощность максимальной аэробной нагрузки. Кроме того, чем выше МПК, тем относительно легче и потому длительнее выполнение аэробной работы.

Например, спортсмены А и Б должны бежать с одинаковой скоростью, которая требует у обоих одинакового потребления кислорода - 4 л/мин. У спортсмена А МПК. равно 5 л/мин и потому дистанционное потребление О 2 составляет 80% от его МПК. У спортсмена Б МПК равно 4,4 л/мин н, следовательно, дистанционное потребление О 2 достигает 90% от его МПК. Соответственно для спортсмена А относительная физиологическая нагрузка при таком беге ниже (работа "легче"), и потому он может поддерживать заданную скорость бега в течение более продолжительного времени, чем спортсмен Б.

Таким образом, чем выше МПК у спортсмена, тем более высокую скорость он может поддерживать на дистанции, тем, следовательно, выше (при прочих равных условиях) его спортивный результат в упражнениях, требующих проявления выносливости. Чем выше МПК, тем больше аэробная работоспособность (выносливость), т.е. тем больший объем работы аэробного Характера способен выполнить человек. Причем эта зависимость выносливости от МПК проявляется (в некоторых пределах) тем больше, чем меньше относительная мощность аэробной нагрузки.

Отсюда понятно, почему в видах спорта, требующих проявления выносливости, МПК у спортсменов выше, чем у представителей других видов спорта, а тем более чем у нетренированных людей того же возраста. Если у нетренированных мужчин 20-30 лет МПК в среднем равно 3-3,5 л/мин (или 45- 50 мл/кг * мин), то у высококвалифицированных бегунов-стайеров и лыжников оно достигает 5-6 л/мин (или более 80 мл/кг * мин). У нетренированных женщин МПК равно в среднем 2-2,5 л/мин (или 35-40 мл/кг * мин), а у лыжниц около 4 л/мин (или более 70 мл/кг * мин).

Абсолютные показатели МПК (л О 2 /мин) находятся в прямой связи с размерами (весом) тела. Поэтому наиболее высокие абсолютные показатели МПК имеют гребцы, пловцы, велосипедисты, конькобежцы. В этих видах спорта наибольшее значение для физиологической оценки данного качества имеют абсолютные показатели МПК.

Относительные показатели МПК (мл О 2 /кг * мин) у высококвалифицированных спортсменов находятся в обратной зависимости от веса тела. При беге и ходьбе выполняется значительная работа по вертикальному перемещению массы тела и, следовательно, при прочих равных условиях (одинаковой скорости передвижения) чем больше вес спортсмена, тем больше совершаемая им работа (потребление О 2). Поэтому бегуны на длинные дистанции, как правило, имеют относительно небольшой вес тела (прежде всего за счет минимального количества жировой ткани и относительно небольшого веса костного скелета). Если у нетренированных мужчин 18-25 лет жировая ткань составляет 15- 17% веса тела, то у выдающихся стайеров - лишь 6- 7% Наибольшие относительные показатели МПК обнаруживаются у бегунов на длинные дистанции и лыжников, наименьшие - у гребцов. В таких видах спорта, как легкоатлетический бег, спортивная ходьба, лыжные гонки, максимальные аэробные возможности спортсмена правильнее оценивать по относительному МПК.

Уровень МПК зависит от максимальных возможностей двух функциональных систем: 1) кислородтранспортной системы, абсорбирующей кислород из окружающего воздуха и транспортирующей его к работающим мышцам и другим активным органам и тканям тела; 2) системы утилизации кислорода, т. е. мышечной системы, экстрагирующей и утилизирующей доставляемый кровью кислород. У спортсменов, имеющих высокие показатели МПК, обе эти системы обладают большими функциональными возможностями.

Внутримышечными структурными факторами, лежащими в основе аэробной работоспособности, являются количество митохондрий в мышечных клетках и содержание в них миоглобина. Аэробные нагрузки, прежде всего, связаны с аэробным способом ресинтеза АТФ, которое протекает в митохондриях. Миоглобин же хранитель и переносчик кислорода в мышечных клетках, то есть от его концентрации завит снабжение этим газом митохондрий. Связь между концентрацией миоглобина и аэробной способностью мышечной ткани уже стала аксиомой.

Но аэробная способность мышцы к работе в большей мере обусловлено внемышечными факторами: функциональным состоянием вегетативных и регуляторных систем организма, запасами внемышечных источников энергии.

В обеспечении аэробных нагрузок активное участие принимает нервная система., формирующая и направляющая мышцы, система кровоснабжения, доставляющая в мышцы, пожалуй, главный лимитирующий фактор – кислород. Последнее означает, что количество эритроцитов в крови во многом определяет способность организма к аэробной работе.

Большой вклад в обеспечение аэробных возможностей организма вносит и печень. Печень обеспечивает мышцы внемышечными источниками энергии.

Важную роль в процессах аэробного обмена играют гормоны. Наибольший вклад в эти процессы вносят гормоны надпочечников. Процессы аэробного и анаэробного ресинтеза АТФ взаимосвязаны, так как анаэробные процессы многократно повторяются во время мышечной работы, а для пополнения запасов креатинфосфата и удаления лактата из мышц необходимы процессы аэробного дыхания. И в значительной мере эти процессы связаны с работой печени.

Еще раз необходимо подчеркнуть, что все виды работоспособности зависят также от технической, тактической и психологической подготовки. Хорошая технико-тактическая подготовка позволяет спортсмену экономно и рационально использовать энергетические резервы и тем самым дольше сохранять работоспособность. За счет высокой мотивации, большой силы воли спортсмен может продолжить выполнение работы даже в условиях наступления в организме значительных биохимических и функциональных изменений.

3. Специфичность спортивной работоспособности и её возрастные особенности. Специфичной спортивной работоспособности.

Спортивная работоспособность характеризуется специфичностью, проявляющейся в значительной мере при выполнении нагрузок характерных для данного вида спорта, которым занимается конкретный спортсмен.

Специфичность работоспособности в значительной мере обусловлена тем, что ряд факторов, лимитирующих качества двигательной деятельности являются сугубо специфическими для каждой спортивной дисциплины. Специфичность работоспособности ещё связана с тем, что при выполнении упражнений, используемых в данном виде спорта, совершенствуется техника движений, повышается их эффективность.

Более высокая специфичность характерна для аэробных компонентов работоспособности, связанных преимущественно с внутримышечными факторами возможностей (количеством миофибрилл, концентрацией мышечного креатинфосфата и гликогена, активность внутримышечных ферментов). Развитие этих факторов в отдельных мышцах у спортсменов разных специализаций неодинаково, так как при выполнении упражнений, свойственных конкретному виду спорта, в основном функционируют только определенные группы мышц. Поэтому за счет тренировок именно у этих мышечных групп повышается работоспособность.

Аэробная работоспособность менее специфична. Эта работоспособность аэробного компонента обусловлена тем, что наряду с внутримышечными факторами (количество митохондрий, внутримышечные запасы источников энергии, активность внутримышечных ферментов энергетического обмена) важнейшее значение для проявления аэробной работоспособности имеют внемышечные факторы. Эти факторы требуют хорошего функционирования сердечнососудистой и дыхательной систем, печени, высокой емкости крови, а также запасы легкодоступных для использования энергетических субстратов. Поэтому спортсмен, имеющий высокий уровень работоспособности, может проявить аэробную работоспособность не только в том виде деятельности, где он прошел специализированную подготовку, но и в других видах мышечной работы. Например, квалифицированный лыжник может показать неплохие результаты при беге на длинные дистанции.

Восстановление (ресинтез) АТФ осуществляется за счет химических реакций двух типов: анаэробных, протекающих при отсутствии кислорода; аэробных (дыхательных), при которых поглощается кислород из воздуха.

Анаэробные реакции не зависят от поступления кислорода в ткани и активизируются при нехватке АТФ в клетках. Однако освободившаяся химическая энергия используется для механической работы крайне неэффективно (только около 20–30%). Кроме того, при распаде вещества без участия кислорода внутримышечные запасы энергии расходуются очень быстро и могут обеспечить двигательную активность только в течение нескольких минут. Следовательно, при максимально интенсивной работе в короткие промежутки времени энергетическое обеспечение осуществляется преимущественно за счет анаэробных процессов. Последние включают в себя два основных источника энергии: креатин-фосфатную реакцию, связанную с распадом богатого энергией КрФ, и так называемый гликолиз, при котором используется энергия, выделяемая при расщеплении углеводов до молочной кислоты (Н3РО4). На рис. 5.9 представлено изменение интенсивности креатинфосфатного, гликолитического и дыхательного механизмов энергообеспечения в зависимости от продолжительности упражнения (по Н. И. Волкову). Следует подчеркнуть, что в соответствии с различиями в характере энергетического обеспечения мышечной деятельности принято выделять аэробные и анаэробные компоненты выносливости, аэробные и анаэробные возможности, аэробную и анаэробную производительность. Анаэробные механизмы наибольшее значение имеют на начальных этапах работы, а также в кратковременных усилиях высокой мощности, значение которой превышает ПАНО.

Рис. 5.9.

Усиление анаэробных процессов происходит также при всевозможных изменениях мощности в ходе выполнения упражнения, при нарушении кровоснабжения работающих мышц (натуживание, задержка дыхания, статические напряжения и т.д.). Аэробные же механизмы играют главную роль при продолжительной работе, а также в ходе восстановления после нагрузки (табл. 5.6).

Таблица 5.6

Источники энергообеспечения работы в отдельных зонах относительной мощности и их восстановление (по Н. И. Волкову)

Зона мощности

Время работы

Пути ресинтеза

Источники энергии

Время восстановления

Анаэробно-алактатная направленность

Максимальная

От 2-3 с до 25–30 с

Креатинфосфат реакция, гликолиз

АТФ, КрФ, гликоген

Анаэробно-гликолитическая направленность

Субмаксимальная

От 30-40 с до 3–5 мин

  • 50-90%

Гликолиз, креатинфосфат реакция

КрФ, гликоген мышц и печени, липиды

Смешанная анаэробно-аэробная направленность

От 3-5 до 40-50 мин

Аэробное окисление, гликолиз

Гликоген мышц и печени, липиды

Аэробная направленность

50-60 мин до 4–5 ч и более

Аэробное окисление

Преимущественно гликоген печени и мышц, липиды

Сутки, несколько суток

В своей совокупности анаэробные и аэробные процессы вполне характеризуют функциональный энергетический потенциал человека – его общие энергетические возможности. В связи с этими основными источниками энергии некоторые авторы (Н. И. Волков, В. М. Зациорский, А. А. Шепилов и др.) выделяют три составных компонента выносливости: алактатный анаэробный; гликолитический анаэробный; аэробный (дыхательный ). В этом смысле различные виды "специальной" выносливости могут быть рассмотрены как комбинации из указанных трех компонентов (рис. 5.10). При напряженной мышечной деятельности прежде всего развертывается креатинфосфатная реакция, которая после 3–4 с достигает своего максимума. Но малые запасы КрФ в клетках быстро исчерпываются, и мощность реакции резко падает (ко второй минуте работы она составляет ниже 10% от своего максимума).

Рис. 5.10.

Гликолитические реакции раскрываются медленнее и достигают максимальной интенсивности к 1–2 мин. Выделенная при этом энергия обеспечивает деятельность в течение более продолжительного времени, так как в сравнении с КрФ запасы миоглобина в мышцах превалируют значительно больше. Но в процессе работы накапливается значительное количество молочной кислоты, что уменьшает способность мышц к сокращению и вызывает "охранительно-тормозные" процессы в нервных центрах.

Дыхательные процессы развертываются с полной силой к 3–5 минутам деятельности, чему активно содействуют продукты распада анаэробного обмена (креатинмолочная кислота), которые стимулируют потребление кислорода в процессе дыхания. Из вышеизложенного становится очевидным, что в зависимости от интенсивности, продолжительности и характера двигательной деятельности будет увеличиваться значение того или иного компонента выносливости (табл. 5.7).

Таблица 5.7

Соотношение аэробных и анаэробных процессов энергетического обмена при беге на различные дистанции (по Н. И. Волкову)

Дистанция, м

Время, с/мин

Скорость,

Потребление О2, % от потребности в О2

Кислородный долг, 02 – долг в % от потребности в О2

Алактатный долг, % от общего долга

Лактатный долг, % от общего долга

Молочная кислота в крови, мг, %

При характеристике выносливости наряду с нашими знаниями о том, как изменяются их компоненты в зависимости от мощности и продолжительности двигательной деятельности, необходимо вскрыть индивидуальные возможности спортсмена для аэробной и анаэробной производительности. Для этой цели в практике физиологического и биохимического контроля используются различные показатели, которые раскрывают особенности и механизмы мышечной энергетики (А. Хилл, Р. Маргария, Ф. Хенри, Н. Яковлев, В. Михайлов, Н. Волков, В. Зациорский, Ю. Верхошанский, Т. Петрова с соавторами, А. Сысоев с соавторами, В. Пашинцев и др.) .

Анаэробная производительность – это совокупность функциональных свойств человека, обеспечивающих его способность совершать мышечную работу в условиях неадекватного снабжения кислородом с использованием анаэробных источников энергии, т.е. в бескислородных условиях. Основные показатели:

  • мощность соответствующих (внутриклеточных) анаэробных систем;
  • общие запасы энергетических веществ в тканях, необходимые для ресинтеза АТФ;
  • возможности компенсации изменений во внутренней среде организма;
  • уровень адаптации тканей к интенсивной работе в гипоксичных условиях.

Аэробные возможности определяются свойствами различных систем в организме, обеспечивающих "доставку" кислорода и его утилизацию в тканях. К этим свойствам относится эффективность:

  • внешнего дыхания (минутный объем дыхания, максимальная легочная вентиляция, жизненная емкость легких, скорость, с которой осуществляется диффузия газов, и т.д.);
  • кровообращения (пульс, ЧСС, скорость кровяного тока и др.);
  • утилизации кислорода тканями (в зависимости от тканевого дыхания);
  • согласованности деятельности всех систем.

Основные факторы, определяющие МПК, более подробно представлены на рис. 5.11.

Рис. 5.11.

Аэробную производительность принято оценивать по уровню МПК, по времени, необходимому для достижения МПК, и по предельному времени работы на уровне МПК. Показатель МПК наиболее информативен и широко используется для оценки аэробных возможностей спортсменов.

По МПК можно узнать, сколько кислорода (в литрах или миллилитрах) способен потребить организм человека за одну минуту. Как видно на рис. 5.11, к функциональным системам, обеспечивающим высокие величины МПК, относятся аппарат внешнего дыхания, сердечно-сосудистая система, системы кровообращения и тканевого дыхания.

Здесь же отметим, что интегральным показателем деятельности аппарата внешнего дыхания является уровень легочной вентиляции. В состоянии покоя спортсмен делает 10–15 дыхательных циклов, объем выдыхаемого за один раз воздуха составляет около 0,5 л. Легочная вентиляция за одну минуту в этом случае составляет 5–7 л.

Выполняя упражнения субмаксимальной или большой мощности, т.е. когда деятельность дыхательной системы полностью развернута, увеличивается как частота дыхания, так и его глубина; величина легочной вентиляции составляет 100–150 л и более. Между легочной вентиляцией и МПК существует тесная взаимосвязь. Выявлено также, что размеры легочной вентиляции не являются лимитирующим фактором МПК. Следует отметить, что после достижения предельного потребления кислорода легочная вентиляция все еще продолжает расти с увеличением функциональной нагрузки или продолжительности упражнения.

Среди всех факторов, определяющих МПК, ведущее место отводится сердечной производительности. Интегральным показателем сердечной производительности является минутный объем сердца. При каждом сокращении сердце выталкивает из левого желудочка в сосудистую систему 7–80 мл крови (ударный объем) и более. Таким образом, за минуту в покое сердце перекачивает 4–4,5 л крови (минутный объем крови – МОК). При напряженной мышечной нагрузке ЧСС повышается до 200 уд/мин и более, ударный объем также увеличивается и достигает величин при пульсе 130–170 уд/мин. При дальнейшем возрастании частоты сокращений полость сердца не успевает полностью наполниться кровью, и ударный объем уменьшается. В период максимальной сердечной производительности (при ЧСС 175–190 уд/мин) достигается максимум потребления кислорода.

Установлено, что уровень потребления кислорода во время выполнения упражнений с напряжением, вызывающим учащение сердечных сокращений (в диапазоне 130–170 уд/мин), находится в линейной зависимости от минутного объема сердца (А. А. Шепилов, В. П. Климин).

Экспериментальные исследования последних лет показали, что степень увеличения ударного объема во время мышечной работы гораздо меньше, чем полагали ранее. Это дает возможность считать, что ЧСС является основным фактором повышения сердечной производительности при мышечной работе. Более того, установлено, что вплоть до частоты 180 уд/мин ЧСС с повышением тяжести работы увеличивается.

О максимальных величинах пульса во время наибольших (предельных) нагрузок единого мнения нет. Некоторые из исследователей фиксировали очень большие величины. Так, Н. Нестеренко получил результат ЧСС в 270 уд/мин; М. Окрошидзе и др. приводят величины в 210–216 уд/мин; по данным Н. Кулика, пульс во время соревнований колебался в диапазоне 175–200 уд/мин; в исследованиях А. Шепилова пульс лишь иногда превышал 200 уд/мин. Наиболее оптимальной ЧСС, позволяющей достичь максимума сердечной производительности, считается ЧП в 180–190 уд/мин. Дальнейшее увеличение ЧСС (выше 180–190 уд/мин) сопровождается отчетливым снижением ударного объема. В восстановительном периоде изменение ЧСС зависит от мощности упражнения и продолжительности его выполнения, от степени тренированности спортсмена.

Следует всегда помнить, что кислородная емкость крови имеет существенное значение при определении МП К. В норме она составляет 20 мл на 100 мл крови. Уровень МПК зависит от веса тела и квалификации спортсменов. По данным П. О. Астранда, у сильнейших борцов Швеции МПК составил от 3,8 до 7 л/мин. Для борца – это уникальный показатель. У "короля" лыж С. Ернберга, выступавшего в 1960-е гг., величина МПК была равна 5,88 л/мин. Однако в перерасчете на 1 кг веса тела С. Ернберг имел показатель МПК, равный 83 млДмин кг) (своеобразный мировой рекорд по тем временам), а МПК у шведского борца-тяжеловеса составил всего 49 млДмин кг).

Следует учитывать, что уровень максимальных аэробных возможностей зависит от квалификации спортсменов. Например, если у здоровых, не занимающихся спортом мужчин, МПК составляет 35–55 млДмин кг), то у спортсменов средней квалификации он равен 56–65 млДмин-кг). У особо выдающихся спортсменов этот показатель может достигать 80 млДмин кг) и более. В подтверждение этого обратимся к показателям МПК у высококвалифицированных спортсменов, специализирующихся в различных видах спорта (табл. 5.8). Необходимо отметить, что показатели аэробной производительности значительно изменяются под влиянием тренировок, в которых применяются упражнения, требующие высокой активизации сердечно-сосудистой и дыхательной систем.

Таблица 5.8

Средние величины МПК у представителей различных видов спорта

Виды спорта

Количество

обследованных

млДмин кг)

Марафонский бег

Бег на длинные дистанции

Велоспорт (шоссейные гонки)

Плавание (длинные дистанции)

Скоростной бег на коньках (стайеры, многоборцы)

Лыжный спорт

Плавание (брасс)

Плавание (кроль)

Ходьба на 20 и 50 км

Бег на средние дистанции

Скоростной бег на коньках (спринт)

Велосипед (трек)

Гребля на каноэ

Плавание (короткие дистанции)

Волейбол

Бег на короткие дистанции

Гимнастика

Многие исследователи показали, что уровень МПК под влиянием тренировок увеличивается на 10–15% от исходного уже в течение одного сезона. Однако при прекращении тренировок, направленных на развитие аэробной производительности, уровень МПК довольно быстро снижается.

Как видно, энергетические возможности человека определяются целой системой факторов, которые в своей совокупности являются главным (но не единственным) условием для достижения высоких спортивных результатов. В практике имеется много случаев, когда спортсмены с высокими анаэробными и аэробными возможностями показывали посредственные результаты.

Наиболее часто причина кроется в слабой технической (в некоторых случаях волевой и тактической) подготовке. Совершенная координация двигательной деятельности является важной предпосылкой для полноценного использования энергетического потенциала спортсмена.

Охарактеризованные биоэнергетические факторы выносливости ни в коем случае не исчерпывают проблему структуры и механизмов этого основного двигательного свойства человека. Исключительно важной для процессов утомления и физической работоспособности является роль нервной системы. К сожалению, ее ведущее положение все еще слабо изучено. Независимо от этого влияние ряда факторов уже не подлежит сомнению. Так, например, считается доказанным, что поддержание импульсного потока на определенном уровне (соответствующем необходимой скорости движения) является одним из главных условий для продолжительной двигательной деятельности. Иными словами, первичным звеном и наиболее общим фактором, характеризующим выносливость, составляют нейронные системы высших уровней управления. Об этом свидетельствует ряд факторов. Так, например, связь гипоталамус – гипофиз – железы внутренней секреции становится неустойчивой у посредственных бегунов на длинные дистанции (большинство из них имеют слабую нервную систему). И наоборот, у 1200 высококвалифицированных бегунов на средние и длинные дистанции – лыжников, конькобежцев, велосипедистов и др. (с сильной нервной системой) – установлена высокая функциональная устойчивость системы: гипоталамус – гипофиз – надпочечные железы (В. С. Горожанин, П. 3. Сирис).